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1. Introduction
With the increasing attention on environmental vulnerabilities due to natural hazards and anthropogenic perturbations, highly reliable environmental monitoring systems available in all-weather conditions are in an acute need. Since the 1970s, earth observation via remote sensing satellites have been providing enormous amount of information in the form of images for monitoring various environmental status and ecosystem state. In detail, remote sensing can provide the images, such as (i) visible (i.e., in the range 0.4-0.7 μm); (ii) near infrared (NIR: 0.7-0.9 μm); (iii) shortwave infrared (SWIR: 1.0-2.5 μm); (iv) thermal infrared (TIR: 3-14 μm); and (v) microwave (i.e., 3 mm-3 m). These images can be categorized into two classes on the bases of their spectral characteristics associated with multispectral and hyperspectral remote sensing. The relatively high spatial resolution images would normally have low temporal resolution and vice versa. Some environmental issues (e.g., forest fires, agricultural droughts, urban flooding, harmful algal bloom, and irrigation management) require high spatial (e.g., 30 m), high temporal (e.g., daily), and high spectral (e.g., hyperspectral) resolutions due to the needs for rapid changes detection in emergency response and mitigation actions. To achieve such goals, data fusion and mining become an indispensable tool providing rapid hindcasting, nowcasting, and forecasting information for risk-informed decision making. This paper presents a literature review of the latest advancement of data fusion and mining technologies for environmental decision making applications. Focus has also been placed on research challenges and perspectives for environmental management under global change impact.
2. History of Remote Sensing
2.1 Evolution of Remote Sensing Sensors and Platforms from 1970s~1990s

In the 1970s, passive remote sensing techniques were first developed to monitor land and surface water conditions, and many versions that have since evolved incorporate frequent improvements (Table 1). Landsat 1, also called “Earth Resources Technology Satellite” until 1975, was launched to determine the application potential and illustrates the need for repetitive environmental monitoring. The satellite was equipped with three cameras to capture images in the red, blue, and green spectra at 185 m resolution, and a multispectral scanner (MSS) that detected four separate spectral bands between 500 and 1,100 nm at 82 m resolution.  Following the success of Landsat 1, Landsat 2 and Landsat 3 were launched in 1975 and 1978, respectively; Landsat 2 utilized the same sensor specifications as Landsat 1, but the spectral band of the MSS sensor on Landsat 3 was expanded to capture radiation between 10,500 and 12,400 nm. With the launch of Landsat 4 in 1982, the spectral and spatial resolution capabilities of the sensors were further improved. The return beam vidicon (RBV) camera sensor was replaced with the thematic mapper (TM) sensor, providing seven bands of 30 m resolution pixels from 450 to 2,350 nm. Landsat 5 was launched in 1985 with the same specifications, and its TM sensor is still in use today, 25 years beyond its planned lifetime. The Coastal Zone Color Scanner (CZCS) was launched in 1978 as a proof-of-concept sensor designed to measure ocean color from space. It laid the groundwork for sensors specifically tuned to measure ocean color at a time when sensors were applied for land remote sensing and meteorological purposes. Ocean color sensors following the CZCS were the Moderate Optoelectrical Scanner (MOS), Ocean Color Temperature Scanner (OCTS), Polarization and Directionality of the Earth’s Reflectances (POLDER), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The significant scientific accomplishments provided by data from SeaWiFS mission was presented by [1] and [2]. 


In 1986, the French launched SPOT 1 (Satellite Pour l'Observation de la Terre), equipped with a high-resolution visible (HRV) sensor that provided 10 to 20 m spatial resolution pixels. Advances in spatial resolution allowed more accurate and detailed classification of targets with a 26-day revisit time. By 1993, SPOT 3 was in orbit but with the same 26-day revisit time. IKONOS, the first remote sensing satellite launched by a private entity, was launched in 1999 with a spatial resolution of 1 m and a revisit time of 1.5 to 3 days. Launched in the U.S during the same year were Landsat 7 and Terra with Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. Terra provides daily near-real-time images with relatively coarse spatial resolutions (250–1,000 m) around the globe; Landsat 7 provides images with spatial resolutions (15–60 m) but low temporal resolution (16 days). In the 1990s, Japan (JERS-1), Europe (ERS-1 and ERS-2), and Canada (Radarsat-1) launched a series of satellites with SAR sensors that capitalized on microwaves to provide microwave sensing capacity with higher resolution regardless of the weather conditions (Table 1). In addition, the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) became available from an airborne sensor through the Jet Propulsion Laboratory (JPL) at the National Aeronautics and Space Administration (NASA) in 1992. The AVIRIS has a unique optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral bands with wavelengths from 400 to 2,500 nm with 20 m spatial resolution.  
Table 1: Evolution of remote sensing platforms from 1970s~2000s [3]
	Launch Date
	Remote sensing platforms
	Sensor(s)
	Spatial Resolution (m)
	Band Range (nm or Band)
	Spectral Bands (# bands)
	Revisit (days)

	1970s
	1972
	Landsat 1 (ERTS 1)
	RBV

MSS
	185

82
	500-750

500-1100
	3

4
	18

	
	1975
	Landsat 2

(ERTS 2)
	RBV

MSS
	185

82
	500-750

500-1100
	3

4
	18

	
	1978
	Landsat 3
	RBV

MSS
	40

82
	500-750

500-12,400
	3

5
	18

	
	1978
	Nimbus 7
	CZCS
	825
	433-12,500
	6
	2-3

	1980s
	1982
	Landsat 4
	MSS

TM
	82

30-120
	500-1100

450-12,500
	4

7
	16

	
	1984
	Landsat 5
	MSS

TM
	82

30-120
	500-1100

450-12,500
	4

7
	16

	
	1986
	SPOT 1
	HRV
	10-20
	500-890
	4
	26

	1990s
	1990
	SPOT 2
	HRV
	10-20
	500-890
	4
	26

	
	1991
	ERS-1
	AMI
	26
	C
	1
	35

	
	
	
	ATSR
	1000
	
	4
	

	
	1992
	ER-2/Twin Otter/ Proteus, and WB-57
	AVRIS
	20
	400-2,500
	224
	Any Time

	
	1992
	JERS-1
	SAR
	18
	1275 MHZ
	1
	44

	
	
	
	OPS
	18-24
	OPS
	18-24
	

	
	
	
	
	
	SWIR
	4
	

	
	1993
	SPOT 3
	HRV
	10-20
	500-890
	4
	26

	
	1994
	RESURS-01-3
	MSU-SK
	170
	500-600
	4
	21

	
	
	
	
	
	600-700
	
	

	
	
	
	
	600
	700-800
	
	

	
	
	
	
	
	800-1,100
	
	

	
	1995
	ERS-2
	SAR
	6-30
	C
	1
	2-7

	
	1995
	Radarsat 1
	SAR
	8-100
	C
	1
	24

	
	1996
	IRS P3
	MOS
	500
	408-1600
	18
	2-3

	
	1996
	ADEOS
	OCTS
	700
	402-12,500
	12
	2-3

	
	
	
	POLDER
	6,000
	433-910
	9
	

	
	1997
	Orbview 2
	SeaWiFS
	1100
	402-885
	8
	1

	
	1998
	SPOT 4
	HRVIR

Veg.
	10-20

1000
	500-1,750

430-1,750
	5

4
	26

	
	1998
	NOAA
	AVHRR
	500-1000
	580-12,500
	6
	1

	
	1999
	Landsat 7
	ETM+
	15-60
	450-12,500
	8
	16

	
	1999
	Ikonos 2
	OSA
	1-4
	450-900
	5
	1.5-3

	
	1999
	Terra

(EOS  AM-1)
	MODIS
	250-1000
	405-14,385
	36
	1

	
	
	
	ASTER
	520-11,650
	15-90
	15
	

	
	1999
	KITSAT-3

(Korea Institute of Technology Satellite-3)
	CCD
	15
	Red, Green, Near Infrared 
	3
	67

	
	
	
	
	15
	
	1
	


	
	1999
	CBERS

(China–Brazil Earth Resources Satellite) 


	WFI
	260
	660
	2
	26

	
	
	
	
	
	830
	
	

	
	
	
	CCD
	20
	510-730
	5
	

	
	
	
	
	
	450-520
	
	

	
	
	
	
	
	520-590
	
	

	
	
	
	
	
	630-690
	
	

	
	
	
	
	
	700-890
	
	

	
	
	
	IR-MSS
	160
	500-1,100
	4
	

	
	
	
	
	
	1,550-1,750
	
	

	
	
	
	
	
	2,080-2,350
	
	

	
	
	
	
	
	1,040-1,250
	
	

	2000s
	2000
	EROS-1
	
	1.8
	500-900
	1
	1-4

	
	2000
	EO-1
	ALI
	30
	400-2,400
	10
	16

	
	
	
	Hyperion
	30
	400-2,400
	220
	

	
	
	
	AC
	250
	900-1,600
	256
	

	
	2001
	Quickbird 2
	PAN
	0.61-2.44
	445-900
	5
	1-3.5

	
	2001
	PROBA
	CHRIS
	17 or 34
	400 -1,050
	18 or 63
	1

	
	2002
	SPOT 5
	HRS

Veg.

HRG
	2.5

1000

5-20
	510-730

430-1,750

500-1,750
	1

4

5
	26

	
	2002
	Aqua

(EOS PM-1)
	MODIS
	250-1000
	405-14,385
	36
	1

	
	2002
	Envisat
	MERIS
	300-2360
	390-1,040
	15
	3

	
	2006
	ALOS
	PALSAR
	10-100
	L
	1
	46

	
	2007
	TerraSAR-X
	SAR
	1-18
	X
	1
	2.95

	
	2007
	Radarsat 2
	SAR
	3-100
	C
	1
	12-24

	
	2007
	Worldview 1
	-
	0.5
	400-900
	1
	1.7-4.5

	
	2009
	Worldview 2
	HRV
	0.5-1.84
	400-1040
	9
	1.1-3.7

	
	2013
	Landsat 8
	OLI
	15-30
	433-2,300
	9
	16

	
	
	
	TIRS
	100
	10,300-12,500
	2
	


2.2 Satellite Sensors and Platforms in the Early 21st Century
Technological advances in the late 20th century led to improved satellite sensor capabilities such as finer spatiotemporal and spectral resolutions.  Short revisit times of sensors such as MODIS Aqua allow more satellites to be used for real-time monitoring applications. In addition, the Medium Resolution Imaging Spectrometer (MERIS) forms part of the core instrument payload of the Environmental Satellite (ENVISAT-1) in Europe to provide hyperspectral rather than multispectral remote sensing images, allowing it to acquire data over the Earth when illumination conditions are suitable. With increased spatial and spectral resolutions, hydrologic, environmental, and ecological changes simultaneously became more noticeable, and event-based monitoring has been greatly enhanced for hazard assessment. With the increasing trend in spectral resolution, substances are more accurately classified when comparing band values. As the importance of microwave remote sensing gained recognition, satellites from Japan (ALOS), Canada (Radarsat-2), and Germany (TerraSAR-X) continued the advancement in SAR remote sensing with varying polarization (HH+HV+VH+VV) modes. At the same time, satellites managed by the U.S., such as Quickbird 2, Worldview 1, and Worldview 2, provided remotely sensed optical data more often with enhanced spatial and spectral details. The upcoming launches of the Sentinel satellites in 2013–2015 will ensure continued land, ocean, and atmospheric monitoring as current sensors and platforms fail and reach the end of their life time.
3. Data Fusion Methods and Relevant Remote Sensing Image Fusion Technologies
The classical definition of data fusion produced by the Joint Directors of Laboratories is: “A process dealing with the association, correlation, and combination of data and information from single and multiple sources to achieve refined position and identity estimates, and complete and timely assessments of situations and threats as well as their significance” [4]. Traditional data fusion focuses on fusing online sensor data (i.e., sensor fusion), but more recent work also considers other sources, such as databases, simulations, ontologies, text documents, the web, and even humans that touches the base of information fusion. To develop cost-effective acquisition, integration and operation of multi-sensor/multi-source systems, multisensor image fusion is the process of combining relevant information from two or more images into a single image and the fused image should have more complete information useful for human decision making or machine learning (Figure 1). In the broadest sense, data fusion involves combining information to estimate or predict the state of some aspect of the system. Overall, data fusion has become the point of interest in multi-disciplinary research as a result of its various applications for earth observations. Automated data fusion processes are critical to support human decision-making by linking data with information, with knowledge discovery and with decision analysis to achieve timely, robust, and relevant assessments and projections of the situation in a system (Figure 2). Satellite imagery demonstrates the same physical environment in different ways as a result of their different spectral, spatial, and temporal resolutions. Image fusion with respect to different remote sensing sensors can be carried out to blend different modalities of satellite imagery into a single image for various earth observation applications leading to a better environmental decision making.
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Figure 1: Relevant terminologies of data fusion
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Figure 2: Data collection, knowledge discovery and decision analysis sequence

In the mid-1980s, image fusion has become a focal area in remote sensing community. These image fusion techniques were classified into two categories: (1) Spatial domain fusion techniques, and (2) Transform domain fusion techniques. The former deals with the image pixels whereas the latter transfers the image into frequency domain for feature extraction. 


The spatial domain fusion techniques can be further divided into (1) color composition-based method (i.e., intensity-hue-saturation (IHS)), and (2) Statistical/numerical method (i.e. Brovey transform, principle component analysis (PCA), high-pass filtering (HPF)). Gillespie et al. [5] suggested the Brovey method which provides enhancement of color in the image. However, this method can cause major changes to the statistical parameters and colors of the original images. Therefore, in the 1990s, IHS method was utilized in the field of remote sensing by Zhou et al. [6]. Although the fused images showed the ability of the IHS in providing an enhancement in spatial resolution, their original spectral information could be distorted. At the same time, the feature of dimensionality reduction of the PCA was also employed for image fusion. The PCA is able to enhance image and benefit data compression. Given that information of the spectral bands cannot be conserved after applying PCA, there is a possibility of losing important information by using this method too. In 1991, Chavez et al. [7] compared the fused images obtained from the PCA and the IHS methods with the HPF introduced by Schowengerdt [8]. Results showed that the HPF had the least spectral distortion.


Despite the spatial domain fusion methods present quite good visual effect, these methods resulted in spectral distortion in the fused images. As an alternative, the transform domain fusion technique was developed and applied due to their capability to decompose signals into frequency spaces and minimize the spectral distortion. This technique includes pyramid method, wavelet transform, and curvelet transform. Early work in image fusion using this method traces back to 1980s. Burt and Kolczynski  [9] showed the application of pyramid method in image fusion can guarantee stability and noise immunity. In the late 1990s, the pyramid method was substituted with wavelet transform that can keep the spectral characteristics of multi-frequency images. However, among the transform domain fusion methods, curvelet method recently showed the best performance in keeping the spectral quality. Contrast to wavelet transform, curvelet is more powerful in delineating edges smoothly in two-dimensional platform and denoising in matching edges from images.  


Overall, on one hand, the ability of spatial domain fusion methods may provide high spatial resolution images, and on the other hand, the ability of the transform domain fusion can minimize the distortion of spectral contents of images. These pros and cons led the community to develop hybrid methods incorporating both merits to enhance the fused images.  Even though these hybrid methods produce synthetic images with helpful spectral information and high spatial resolution by blending high spatial resolution of panchromatic bands, they are not able to enhance spatial and temporal resolutions simultaneously. To bridge the gap, Gao et al. developed a spatial and temporal adaptive reflectance fusion model (STAR-FM) to blend the coarse-resolution of MODIS with the high spatial resolution of Landsat and produce fused images with both high spatial and temporal resolution [10]. 


STAR-FM algorithm has three limitations. First, STARFM cannot handle the directional dependence of reflectance, which is usually described by the Bidirectional Reflectance Distribution Function (BRDF). To overcome this barrier, the semi-physical fusion approach developed by Roy et al. [11] may improve it through the BRDF model refinement using MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data. Second, STAR-FM model is not able to detect disturbance events when changes are temporary. To detect such changes, a new data fusion model entitled the spatial temporal adaptive algorithm for mapping reflectance change (STAARCH) was developed by Hilker et al. [12]. This algorithm applied Tasseled Cap transformation of both Landsat TM/ETM and MODIS reflectance values to detect changes in reflectance. Lastly, STAR-FM cannot predict reflectance accurately in case of existence of heterogeneous fine-grained landscapes. The Tasseled Cap Transformation in remote sensing is the conversion of the readings in a set of channels into composite values through the weighted sums of separate channel readings. Whereas one of these weighted sums measures the brightness of each pixel in the scene, the other composite values may be linear or nonlinear combinations of the values of the separate channels. PCA that may create new variables as weighted sums of the different channel readings could have provided the inspiration and guide for specifying the tasseled cap transformations. Since the STAARCH algorithm is based on selecting the optimal Landsat images, it may have the same problem of STAR-FM in heterogeneous regions and in aquatic environments. Thus, the enhanced spatial and temporal adaptive reflectance fusion model (ESTAR-FM) was developed by Zhu et al. [13] to bridge the gap. ESTAR-FM is more suitable for heterogeneous regions compared to the aforementioned methods as a results of using at least two pairs of fine- and coarse-resolution images and a set of coarse resolution for prediction dates, and applying conversion factors related to end members between the Landsat and MODIS data. 


The series of STAR-FM-based methods applied the low spatial resolution images (i.e. MODIS) to estimate the change which leads to deviation in estimating the changes in the high spatial resolution images. On the other hand, the ability of STAARCH in detecting landscape disturbance is limited to specific types of land-cover change. Therefore, the sparse-representation-based spatiotemporal reflectance fusion model (SPSTFM) was presented by Huang et al. [14] which is able to estimate the structure of change better than previous methods. SPSTFM counted on a dictionary-pair learning of patches to determine the correlation between the difference images of high and low spatial resolution. The processing unit of this method is patches rather than pixels, which guaranties the reconstruction of change structure. However, the ability of this method is limited in many remote sensing applications, as a result of availability of only one pair of pre or post images in some cases (e.g. due to frequent cloud contamination). 

The spatial resolution of medium resolution sensors, such as MODIS and MERIS, is not good enough to discern the land use classes within each pixel. Hence, the value of a pixel could be composed of signals originating from the individual land use pattern embedded in that pixel, which is so called mixed pixel. To analyze mixed pixels, we can apply linear spectral unmixing of the data to retrieve the subpixel proportions of these components (i.e., endmember) embedded in the pixel if we have a priori knowledge of these components that might be present in that pixel. This requires the knowledge of abundance of the endmembers in a mixed pixel. Satellite imagery with higher spatial resolution may provide such information of abundance of the endmembers. The application of linear mixing model is thus known as unmixing data fusion. As high or low resolution satellite imagery may provide better spectral profile information to complement the spatial analysis, spatial unmixing method can be applied to any pair of satellite images. For example, an unmixing-based data fusion technique is used to generate images that have the spatial resolution of Landsat TM and the spectral resolution provided by the MERIS sensor. The unmixing-based data fusion approach was developed by Zurita-Milla et al. [15]. The method of the unmixing-based data fusion approach requires the trade-off between the number of classes used to classify the TM image and the size of the MERIS neighborhood used to solve the unmixing equations. Although the fundamental idea of simulating reflectance at fine resolution is the similar in between unmixing-based data fusion and the STAR-FM-based methods, their approaches are basically different. The latest unmixing-based data fusion approach is based on downscaling a low spatial resolution images. In 2012, Wu et al. [16] developed the unmixing-based data fusion algorithm by proposing a new spatial and temporal data fusion model (STDFM) which can obtain the reflectance of different endmembers. However, STDFM has two drawbacks due to: (1) obtaining only one reflectance value for all high spatial resolution pixels belonging to one class in unmixing the low spatial resolution imagery; (2) not making a full use of the information of the known spatial resolution images. Therefore, to improve the STDFM algorithm, Zhang et al. [17] developed an enhanced STDFM (ESTDFM) by introducing a patch-based ISODATA classification method, the sliding window technology, and the temporal-weight concept. It is known that data fusion of low spatial-resolution hyperspectral, such as MERIS, and high spatial-resolution multispectral images, such as Landsat TM, based on a linear mixing model enables the production of high spatial-resolution hyperspectral data with small spectral distortion [15]. However, the linear mixing model based hyperspectral - multispectral data fusion can be extended to nonlinear mixing model using a bilinear mixing model, which considers second scattering of photons between two distinct materials [18]. A generalized bilinear model is able to deal with the underlying assumptions in the bilinear mixing model [18].
The advantages and disadvantages of all relevant data fusion methods and their integration were explained in detail in Table 2. Based on the chronological order of evolution in image fusion technique, Table 2 is divided into three sections of the 1980s-1990s, the 2000s, and the 2010s. In addition, the evolutionary pathways of different types of image fusion methods is shown in Figure 3 in a chronological order in which each building block represents a stand-alone technology hub. Up to the present, there is no single algorithm/method that may tackle the challenges when monitoring changing aquatic environments due to severe cloud contamination in wet seasons.
Table 2(a). Advantages and disadvantages of different data fusion algorithms in the 1980s and the 1990s

	Method
	Advantage
	Disadvantage
	Reference

	PCA
	· Able to merge all bands at one time.
· Enhance spatial resolution.
	· Distortion the  of the original spectral information.
· Causes significant color distortion.
	[7]

	IHS
	· No need to radiometric corrections or radiometric enhancements 

· Enhance spatial details of the multi-spectral images and improve the textural characteristics of the fused images.
	· Distortion of the original spectral information

· Based on the conversion of only the color values (RGB).
	[19]–[22]

	Brovey Transform
	· Increase the contrast in the low and high ends of an images histogram.
· Suitable to produce RGB images with higher degree of contrast.
	·  Should not be used if keeping the original scene radiometry is important.

·  Causes major changes to the statistical parameters of the original images.
· Cause change in the colors of the original images.


	[5], [23], [24]

	HPF
	· Least distortion of the spectral characteristics.
· Keep the low frequency components of TM bands and high frequency components of SPOT bands.
· It can improve spatial details of the multispectral images.
	·  Find one optimal filter for various ground cover types is difficult or even impossible.
·  Contaminated with serious noise.
	[7]

	Pyramid Method
	· Using Laplacian pyramid  is considered to reduce image noises 

· Each pyramid level in Laplacian pyramid appeared to produce only one bandpass signal, which made applying multi-resolution scheme to the LP less complicated.
· Modified version of Laplacian pyramid can minimize the image noise.

	· Provide an ‘‘over completed representation’’ of the original image.


	[9], [25]


	Wavelet Transform
	· Able to characterize the local variance at different scales.
·  It has the least distortion of the spectral characteristics.
·  Conserves the spectral fidelity of Landsat TM.
	·  Discards low frequency component of the panchromatic image completely.

·  Causes some ringing effects or degradation of multi-spectral information.
	[6], [26]–[28]

	Curvelet Transform
	· It delineates edges smoothly in two-dimensional platform

· More capable to fulfill denoising in matching edges from images

· Shows a greater spectral quality compared with  IHS and Wavelet methods
	·  Required more complicated computational effort than other methods
	[29]


Table 2(b). Advantages and disadvantages of different data fusion algorithms in the 2000s

	Method
	Advantage
	Disadvantage
	Reference

	HIS-Wavelet

PCA-Wavelet


	· Enhance the spatial details and keep the spectral information of the multi-spectral image.

· Keeps more localized feature information compare to the classical wavelet fusion method.

	· Compare to fused image produced by PCA or wavelet, the resulted images of the combined method is inferior in correlation coefficient and deviation index. 


	[30]

	Wavelet-PCA
	· 
	· 
	[31]

	STAR-FM
	· Able to record the transition from one state to another.
	· Cannot predict disturbance events 

· Any changes that are too subtle to be observed by the MODIS observations are not predictable with this algorithm.

· STARFM method does not explicitly handle the directional dependence of reflectance. 

· Apply LSR images to estimate change or change trend.
	[10]

	Semi-Physical Fusion Approach
	·  It does not require any tuning parameters.
·  Not affected by the missing or contaminated neighboring Landsat pixels.
	· Scale discrepancy
	[11]

	Unmixing-based data fusion
	· Reconstruct images with a high spectral fidelity.
· It can be applied even if the low resolution image only has mixed pixels.
	· Number of components that can be unmixed is limited by the number of spectral bands of the image.

· It requires a high resolution land-use database for pixel unmixing.
	[15]

	STAARCH
	· More capable in detecting the spatial and temporal changes in the landscape.

	· It has the same problem as STARFM for heterogeneous regions. Prediction results degrade somewhat when used on heterogeneous fine-grained landscapes.

· Its ability in detecting landscape disturbance is limited to specific types of land-cover change.
	[12]


⃰ LSHT: low spatial and high temporal resolution; HSLT: High spatial and low temporal resolution; LSR: low spatial resolution

Table 2(c). Advantages and disadvantages of different data fusion algorithms in the 2010s

	Method
	Advantage
	Disadvantage
	Reference

	ESTARFM
	· ESTARM is more suitable for heterogeneous regions than STARFM owing to the use of “conversion coefficient” between the Landsat and MODIS data.

· Improves the accuracy of predicted fine-resolution reflectance 
	· It is built under the assumption that land-cover types and the proportion of each land cover type do not change during the observation period.

· It cannot accurately predict objects for which shape changes with time.

· It cannot accurately predict short-term, transient changes

· Sensors with different spectral band passes may lead to nonlinear relationships.

· Compared with the original STARFM algorithm, the ESTARFM may be more computationally intensive and require at least two pairs of fine- and coarse-resolution images acquired at the same date

· Its automated processing is limited by necessity of setting the size of moving window and the number of classes

· Apply low spatial resolution images to estimate change or change trend
	[13]

	SPSTFM
	· Accounts for all the reflectance changes during an observation period

· Capturing both the phenology and type change 
	· Longer computation time than STAR-FM algorithm

· In many remote sensing applications, only one pair of prior images may be available.
	[14]

	STDFM
	· It can obtain the reflectance of different end members
	· Can only get one reflectance value for all high spatial resolution pixels belonging to one class in the unmixing of a low spatial resolution images.

	[16]

	The bilinear mixing model
	· consider second scattering of photons between two distinct materials
	· More computational time is required.
	[18]

	ESTDFM
	· More accurate in forecasting than the original STDFM algorithm

·  Full use of the information 
	· It still has some drawbacks (e.g., “patch effect”) and constraints (e.g., the linear spectral fusion model).


	[17]

	Spatiotemporal Satellite Image Fusion

Through One-Pair Image Learning
	·  It can be applied to both phenology and land-cover-type changes

·  It improves the change delineation accuracy in the prediction image by increasing the spatial resolution of LSHT satellite image.
	· The method takes more computational time due to dictionary training
	[32]


⃰ LSHT: low spatial and high temporal resolution as opposed to HSLT that stands for High spatial and low temporal resolution
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Figure 3. The chronological order of different types of image or data fusion methods; Red arrows show the complementary effect of each image fusion method compare to previous one
4. Data Mining with Inversion Methods and Retrieval Algorithms

One challenge in earth observations by remote sensing is selecting a suitable inversion method to find strong relationships between target parameters, such as water quality parameters, and remotely sensed data. These methods for general calibration and image-processing methods were classified into three categories: empirical, analytical, and semi-empirical/semi-analytical (i.e. hybrid) methods.  Empirical methods help determine the statistical relationships between measured water quality parameters and spectral values [33], [34]. This method involves linear and multilinear statistical regression, curve fitting, and nonlinear regression with computational intelligence techniques such as artificial neural network (ANN), support vector machine (SVM), particle swarm optimization (PSO), and genetic programming (GP) models. Analytical methods apply the inherent optical properties (i.e., the absorption coefficient, the scattering coefficient, and the volume scattering function) and the inherent optical properties (i.e., the diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance) to model the reflectance and vice versa [35]. Analytical methods for information retrieval in environmental systems emphasize analytical models, such as radiative transfer models, for processing remote sensing observations. While analytical methods are based on optical theory in physics, semi-empirical/semi-analytical methods imply the integration of empirical and analytical methods for general calibration and image-processing procedures [36].  These hybrid methods may be expressed as empirical equations in which the optical theory in physics can be embedded (i.e., semi-empirical method) or radiative transfer theory can be expressed in an empirical way (i.e., semi-analytical method) by using regression methods to improve the overall estimation accuracy or coverage. The following three sections chose water quality monitoring for demonstration.
4.1 Empirical Methods
The common challenges of empirical methods are to find relationships between water quality parameters and spectral values (individual band, combinations of bands, or ratio of bands) by means of regression-related efforts. Traditional statistical techniques provide linear or multiple linear regressions between measured water quality parameters and remotely sensed data [37]. In multiple linear regressions, the measured water quality parameters are considered as dependent variables, while spectral values from different bands are considered as independent variables. Performing multi-temporal change detection with remotely sensed data via the multiple linear regressions can improve the potential of water quality monitoring. The results of linear regression models are not reliable in water bodies with high or low concentrations of water quality parameters, however, such as shallow coastal areas or inland water bodies, respectively [38], [39].  The presence of a nonlinear relationship among water quality parameters and the inability of linear regression methods to identify the precise relationships led scientists to develop new approaches [40]; therefore, some computational intelligence models such as ANN, SVM, PSO, and GP, and their combination with other models have been applied to retrieve water quality parameters from different bands of remotely sensed data (Table 3). Empirical models developed for a specific water body may not be wholly transferable to other water bodies; however, a major advantage is that they integrate unique characteristics of the water body into the resulting model and, consequently, typically yield higher explanatory power in determining water quality conditions than a general analytical model. This advantage also poses an apparent limitation, however, because the accuracy of the empirical model may degrade when applied to surface waters with different types of chemical constituents in different environments. Thus, empirical algorithms work best when applied to the site where sampling data were collected and the formulas were derived [39], [41], which makes empirical algorithms useful for monitoring local water bodies for municipalities, but analytical or semi-empirical models are typically more suited for cases intended to be transferable between lakes, reservoirs, or coastal regions to address varying water quality conditions [42]. 

Table 3. Selected empirical and hybrid methods applied to retrieve water quality parameters from remotely sensed data [3].
	Remote Sensing Platforms
	Location
	Method
	Reference

	ADEOS/OCTS

	South of Honshu, Sea of Japan, Tokyo Bay, Sagami Bay, Japan
	Statistical Regression
	[43]

	Landsat TM
	Delaware Bay, U.S.
	Artificial Neural Network
	[44]

	SPOT
	Yeong-Her-Shan Reservoir, China
	Genetic Programming
	[45]

	Landsat TM
	Beaver Lake, U.S.
	Radial Basis Function Neural Network Models

( RBFN)
	[46]

	Landsat TM
	Beaver Reservoir, U.S.
	Artificial Neural Network
	[47]

	Landsat TM
	Poyang Lake, China
	Statistical Regression and Artificial Neural Network
	[48]

	Landsat 7 ETM
	Feitsui Reservoir, Taiwan
	Incorporating Grammatical Evolution in Genetic Algorithm

(GEGA)
	[49]

	MODIS
	Lake Okeechobee, U.S.
	Genetic Programming, Artificial Neural Network, and Multiple Linear Regression
	[37]

	Landsat TM
	Taihu Lake, China
	Fusion Method (Choquet Fuzzy Integral-CFI)
	[40]

	MERIS VIS/NIR
	Baltic Sea
	Artificial Neural Network
	[50]

	Landsat TM
	Kissimmee River, U.S.
	Artificial Neural Network 
	[51]

	FieldSpec FR spectroradiometer
	Shitoukoumen Reservoir, China
	Genetic Algorithms and Partial Least Square

(GA-PLS)
	[52]


4.2 Analytical Methods
Because the application of empirical methods is limited to a specific region where the samples were collected and the formula was derived, scientists have derived new, transferable methods, in which the analytical methods are developed based on optical properties correlated with the radiative transfer equation [42]. Retrieval of water quality parameters in the analytical approach was based on a bio-optical approach [33]. Bio-optical models determine the relationship between the inherent and apparent optical properties of the specific water quality parameter and the remotely sensed water reflectance. Dissolved and particulate substances cause light to scatter and attenuate after it penetrates the water surface. With such impacts induced by dissolved and particulate substances, two different parameters including inherent properties (i.e., total absorption coefficient, total scattering coefficient, and attenuation coefficient) and apparent optical properties (i.e., partial attenuation coefficient and irradiance reflectance) describe the underwater light field [53]. The light signal leaves the water surface and reaches a sensor, carrying the inherent optical information of the water body. Light backscattering sends downwelling photons upward to leave the water surface. As photons leave the water surface, they affect the air–water boundary by reflectance; however, light absorption changes photons into heat or chemical energy [54]. Tzortziou et al. [54] presented the following equation for estimating remote sensing reflectance based on the backscattering and absorption:
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 is the total backscattering coefficient; a(λ) is the total absorption coefficient; t(w,a) is the water–air transmission; t(a,w) is the transmission from air to water; nw is the real part of the refractive index of the water; f is the complex function of wavelength, water inherent optical properties, solar zenith angle, aerosol optical thickness, and surface roughness; and Q is the ratio of upwelling irradiance (Eu(λ)) to upwelling radiance (Lu(λ)).
A summary of selected studies related to the applications of analytical methods in remote sensing for water quality monitoring (Table 4) shows several previous studies focused on finding a relationship between inherent and optical properties. Some applied Monte Carlo simulations for the radiation transfer to calculate the optical properties of an ocean as a function of inherent optical properties [55], [56]. Others investigated the relationship of optical properties to particulate and dissolved substances in the sea and inland waters [57]–[59].  In addition, bio-optical models can be used to retrieve concentrations of the specific water quality parameter from their reflectance spectra by applying analytical inversion methods such as (1) matrix inversion method (MIM), (2) ratio matrix inversion, and (3) one-band algorithm for information retrieval [39].  

Reif [41] mentioned the following advantages of analytical methods as compared with empirical methods: (1) analytical methods can be applied to assess optical components in the water column of both deep and shallow water bodies; (2) unlike empirical methods, analytical methods are not dependent on in situ water quality data and can be applied independently; and (3) the application of analytical methods is not limited to a specific region, and they can be applied in other lakes and reservoirs with dissimilar conditions. Although the analytical method is independent of the in situ water quality data, it is dependent on optical properties of water bodies and therefore is not a universally applicable method within a wide range of spectral bands [41]. 
In addition to satellite sensors, a few hand-held spectroradiometers were used to collect local spectral properties. Both the Compact Airborne Spectrographic Imager (CASI) and the AVIRIS are air-borne remote sensing sensors mounted on aircraft for regional studies. CASI can be used for mapping biophysical properties via radiometric and geometric analysis, and AVIRIS is a premier instrument in the realm of Earth Remote Sensing. Both were applied for water quality monitoring [60], [61]. 
Table 4. Selected analytical methods applied for information retrieval of water quality parameters [3].
	Remote Sensing Platforms
	Location
	Method
	Reference

	Compact Specrographic Imager (CASI)
	Lake Braassem, Netherlands
	 MIM
	[62]

	CZCS
	Mediterranean Sea
	Purely Analytical Method
	[63]

	MOS (Phase-I)

SeaWiFS (Phase II)
	North Sea
	Analytical Inversion of an Optical Model
	[64]

	Landsat 5 TM and SPOT-HRV
	Southern Frisian Lakes, Netherlands
	Forward and Inverse bio-optical modeling
	[65]

	SPOT and Landsat TM
	14 Frisian Lakes, Netherlands
	Analytical Optical Modeling
	[34]

	EO-1(Hyperspectral Hyperion Data)
	Moreton Bay, Australia
	 MIM
	[66]

	Landsat 7  ETM
	Moreton Bay, Australia
	Analytical Model of Underwater Light Climate
	[67]

	EO-1 (Hypespectral Hyperion Data)
	Lake Garda, Italy
	 MIM
	[68]

	Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
	Hudson/Raritan Estuary, New Jersey, U.S.
	Bio-optical Model
	[60]


4.3 Semi-Analytical/Semi-Empirical Methods
Some of the latest studies related to the application of remote sensing for water quality monitoring favored semi-empirical or -analytical (i.e., bio-optical) methods over empirical methods [69]. Semi-empirical/semi-analytical methods are based on “studying the effects of inherent optical properties of optically active variables on the applied wavelengths’ reflectance” [70].  In other words, this method is a combination of analytical and empirical methods discussed in previous sections. Several previous studies conducted in the last few years applied semi-analytical/semi-empirical methods in remote sensing for water quality monitoring in varying types of water bodies worldwide (Table 5), using both air- and space-borne multispectral and hyperspectral data.
Table 5. Selected semi-empirical or semi-analytical methods applied for information retrieval of water quality parameters [3].
	Remote Sensing Platforms
	Location
	Method
	Reference

	CASI and CESAR
	Northern Vecht Lakes, Netherlands
	Semi-Empirical Method
	[35]

	SeaWiFS
	Bedform Basin, Canada
	Semi-Analytical Model
	[71]

	Landsat TM and simulated SeaWiFS
	Gulf of Finland
	Semi-Empirical Algorithm
	[72]

	SeaWiFS
	-
	Semi-Analytical Garver-Siegel-Maritorena (GSM) Model
	[73]

	Hyperspectral airborne casi and HyMap
	Mecklenburg Lake Dirstrict, Germany
	Semi-Empirical Multi-sensor and Multi-temporal Approach
	[74]

	SeaWiFS

MODIS
	South Pacific Region (Marquwsas Islands)
	Semi-Analytical Model-based Ocean Color Merging Approach
	[75]

	Hyperspectral Coupled Ocean Dynamics Experiments (HyCODE)
	Mid-Atlantic Bight-U.S.
	Semi-Analytical Inversion Model
	[76]

	SeaWiFS
	UK shelf seas and NE Atlantic Ocean
	Semi-Analytical IOP (Inherent Optical Properties) Model
	[77]

	ASD FieldSpec UV-VNIR
	Geist and Morse Resevoirs-Indiana-U.S.
	Semi-Empirical Remote Sensing Method
	[69]

	MERIS, ASTER, Airborne Hyperspectral Spectrometer(AHS)
	Vecht and Veluwe lakes, Netherlands
	Semi-Analytical IOP 
	[78])

	MODIS
	Southern Beaufort Sea
	Semi-Analytical Method
	[79]

	MODIS
	Gulf of Gabes, Libya
	Semi-Empirical Method
	[80]


4.4 Intercomparisons among Inversion Models
A matrix developed to address the chronological trend of applying inversion methods for monitoring water quality by remote sensing (Figure 4) shows that empirical methods are well-developed along the timeline in parallel with analytical methods as ad hoc semi-empirical or semi-analytical methods were implemented to promote accuracy. Application of different inversion methods for monitoring differing water quality constituents can be summarized based on their chronological order (Figure 5). The diversity of different types of methods is significant in the 2000s (Figure 4). Most methods focused on retrieving chlorophyll-a and total suspended matter (TSM). Because the accuracy of these methods is increasing, their complexity and required computational time are intricate as well. 
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Figure 4. The chronological trend of inversion methods for monitoring water quality by remote sensing [3].
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Figure 5. Applications of different inversion methods for monitoring differing water quality constituents [3].
5. Research Challenges and Opportunities

5.1 Cloud Contamination Issue

Cloud contamination has been a long standing issue in data fusion and mining if environmental systems. Successful multisensor and multiresolution image fusion that may overcome the cloud contamination issue requires involving much complicated algorithms which could include: (1) the combination of multiple satellite sensors with different spatial, temporal, and spectral resolution to provide and synergistic effect; (2) integration of optical and microwave remote sensing images to provide complementary effect. With the integration of optical and microwave remote sensing images including ERS-1/2, JERS, RADARSAT-1/2 and ENVISAT ASAR, enhanced data fusion and mining can be used to harmonize the cloud contamination as microwave remote sensing can always penetrate the cloudy sky in all weather conditions. The spectrum of SAR technologies of interest includes Inteferometric SAR (abbreviated as InSAR or IFSAR, or ISAR), Polarimetric SAR (PolSAR) (HH, VV, HV and VH with angular response), multi-parametric SAR data, and Inverse Synthetic Aperture Radar (abbreviated as ISAR too, and pronounced as "ai" SAR) (i.e., for sensing the moving targets in the aquatic environments). For example, multi-temporal HH polarization data can possibly discern the wave-intensive regions versus tranquil regions to some extent, which enables pattern recognition in aquatic environments.
5.2 Data Mining Issue

Data mining or inverse modeling requires using large amount of ground truth data sets to calibrate and validate some of the highly nonlinear semi-empirical and empirical models in supervised learning to improve the prediction accuracy. This complexity made such a system unable to be operational in various emergency response conditions [64]. Development of dictionary-based system to carry out unsupervised data mining are in an acute need. But this demands a long-term effort to build up a global scale database resulting in big data in support of the decision making in emergency response events.
5.3 Data Format Issue

When dealing with data fusion, data are oftentimes acquired from different databases with a nonuniform storage format and various processing level instead of from a single sensors and platforms at the same processing extents, storage formats, and acquisition policies. This will create critical challenges for big data management, big data analytics, or scientific discovery processes impacted by big data to support the data mining and inverse modeling. These advancements will cover techniques, methodologies and technologies that can be computational, statistical, or mathematical in nature, to focus on novel theoretical analysis or experimental evaluation of these techniques and methodologies. In any circumstance, a consensus process that encourages development and implementation of open standards for geospatial contents and services is required [3]. 
5.4 Decision Making

The concept of a "sensor web" that depends on the "Sensor Web Enablement," developed by the Open Geospatial Consortium aided by a suite of web service interfaces and communication protocols abstracting from the heterogeneity of sensor communication, can improve the provision of alternatives of sensor fusion, image fusion and information fusion. Data management in a worldwide sensor web, with essential support of various semantic modeling of data fusion and annotation of sensor data to aid in data mining, is in an acute need. Besides, the interoperability of web-based models (model web) for satellite data fusion and mining can be in concert with the sensor web; thus, an integrated system of sensor web and model web to create innovative remote sensing technologies may be configured as a web-based service industry through common information gateways to support decision making [3].

6. Concluding Remarks

In order to address increasingly demand for environmental monitoring in both the public and private sectors, the thriving research in satellite data fusion and mining have been motivated in unpredictable speed in academic communities. Moreover, unparalleled market growth and huge potential requirements of such applications have been accelerating the improvement of satellite data fusion and mining as an integral part of data science in support of decision making. With the fast advancement and development of information science and technology, satellite sensor design, image processing technologies, computer science and other related science and technologies, various remote sensing technologies and systems analysis have been immensely developed and applied to different domains to meet high customer expectations in many environmental monitoring applications. These types of decision analysis can be applied for improving natural hazard or natural resources management within coupled natural systems and the built environment. Along this line, research challenges and opportunities also keep competing with the developments of remote sensing systems in the global change era. Some research challenges presented above should be addressed within the next few years, though others may need a few decades to be thoroughly resolved. 
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