488 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

Using Formal Verification to Evaluate
Human-Automation Interaction: A Review

Matthew L. Bolton, Member, IEEE, Ellen J. Bass, Senior Member, IEEE, and Radu 1. Siminiceanu

Abstract—Failures in complex systems controlled by human
operators can be difficult to anticipate because of unexpected
interactions between the elements that compose the system, includ-
ing human-automation interaction (HAI). HAI analyses would
benefit from techniques that support investigating the possible
combinations of system conditions and HAIs that might result
in failures. Formal verification is a powerful technique used to
mathematically prove that an appropriately scaled model of a
system does or does not exhibit desirable properties. This paper
discusses how formal verification has been used to evaluate HAI.
It has been used to evaluate human-automation interfaces for
usability properties and to find potential mode confusion. It has
also been used to evaluate system safety properties in light of
formally modeled task analytic human behavior. While capable
of providing insights into problems associated with HAI, formal
verification does not scale as well as other techniques such as
simulation. However, advances in formal verification continue to
address this problem, and approaches that allow it to comple-
ment more traditional analysis methods can potentially avoid this
limitation.

Index Terms—Cognitive task analysis, formal methods, human
performance modeling, human-automation interaction (HAI),
mode confusion, model checking, theorem proving, verification.

I. INTRODUCTION

HE DESIGN of human-automation interaction (HAI)

has contributed to failures in domains including aviation
[1]-[4], process control [5], and medicine [6]. For example,
HALI has played an important role in the crashes of American
Airlines Flight 965 [7] and China Air 140 [8]; the grounding
of the Royal Majesty cruise ship [9]; the disaster at Three
Mile Island [10]; and the death of medical patients with the
Therac-25 [11]. Despite improvements in HAI design prac-
tices, it is difficult to anticipate all potential interactions within

Manuscript received November 9, 2010; revised August 8, 2011 and
March 14, 2012; accepted June 24, 2012. Date of publication March 7,
2013; date of current version April 12, 2013. The work documented here
was completed while Matthew L. Bolton was a Senior Research Associate
for San José State University Research Foundation at NASA Ames Research
Center. The project was supported in part by Grant Number T15L.M009462
from the National Library of Medicine (NLM), NASA Cooperative Agreement
NCC1002043, NASA Contract NNA10DE79C, and FAA Task Number 09-
AJP61SSP-0071. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the NLM, NASA, NIA,
FAA, or the National Institutes of Health. This paper was recommended by
Associate Editor C. Cao.

M. L. Bolton is with the Department of Mechanical and Industrial Engi-
neering, University of Illinois at Chicago, Chicago, IL 60607, USA (e-mail:
mbolton @uic.edu).

E. J. Bass is with the College of Information Science and Technology and
College of Nursing and Health Professions, Drexel University, Philadelphia,
PA 19104 USA.

R. L. Siminiceanu is with the National Institute of Aerospace, Hampton,
VA 23666, USA.

Digital Object Identifier 10.1109/TSMCA.2012.2210406

and between system components (human operators, human-
automation interfaces, device automation, and conditions in the
operational environment) [10], [12].

A. HAI

Researchers have identified factors that contribute to prob-
lems with HAI along with technologies and tools to address
these problems [13], [14].

1) Sources of HAI Failures: Problems with HAI can occur
for a number of reasons. Automation may be brittle, as it
can only respond to the pre-specified situations for which it
was designed [15]. With brittle automation, operators may
encounter problems in situations outside the scope of the au-
tomation’s design parameters [15]-[18]. The human operator
may also find it difficult to combine cues and decision support
provided by automation with additional information not used
by automation, but deemed important by the operator [18].
Unfortunately, a system may not identify when the limits of
its automation are reached. HAI design paradigms have been
developed to address brittle automation. For example, end users
may be allowed to customize automation [19] or the automated
systems may be allowed to expand their capabilities after
being fielded [20]. However, problems can still arise because
operational conditions or device behaviors were not anticipated
by the designer; the design of automation was oversimplified
due to schedule, economic, or technological limitations; or the
device automation and/or human-automation interface were not
implemented in accordance with the design.

Human-automation interfaces may not provide enough feed-
back about the state of the device automation [21], [22]. Fur-
ther, human operators may not properly understand how the
automation works (they may not have a correct mental model)
[23]. Both of these conditions can lead to mode confusion,
where the human operator is unable to keep track of the state
or mode of the device automation. This is dangerous because
mode confusion can result in automation surprise, where the
operator’s situation awareness is disrupted by the device au-
tomation behaving in an unexpected way [23], [24]. Further,
mode confusion can lead to the human operator either perform-
ing inappropriate actions (errors of commission) or omitting
necessary ones (errors of omission) [23]. Thus, operators of
automated systems must work to maintain mode awareness to
avoid such errors [25]. This may be very difficult given the large
number of mode combinations, the variety of behaviors a given
mode can exhibit, and the range and quantity of information
displayed in some systems [23].

As systems become more automated, the tasks of the human
operator change. For example, he or she may need to supervise
and monitor the operation of the system rather than control it

2168-2216/$31.00 © 2013 IEEE

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 489

directly. In such situations, human operators may not have been
trained in these new tasks [26]. They may fixate on a specific
task while neglecting others, such as passively monitoring the
system [15], [27]-[30]. They may also alter their task behavior
such that they become too dependent on automation (a con-
dition known as automation bias) and therefore acquire and
evaluate system information less vigilantly [17], [31].

Problems can also arise as a result of incompatibilities
between the behavior of the device (both its automation and
human-automation interface) and the cognition of the human
operator. Many erroneous human behaviors have predictable
cognitive causes [12] related to human working memory,
human knowledge, human perception, or human physical co-
ordination. It is possible to prevent some erroneous human
behaviors through changes to the behavior of the device’s
automation and human-automation interface [32]-[35].

Thus, problems with HAI can arise as a result of inadequacies
in the human-automation interface (due to problems of usability
or mode) or more system-level problems related to unantici-
pated interactions between the human operator’s behavior and
the system (related to the human task, other cognitive reasons,
unanticipated limitations of the automation, unforseen opera-
tional conditions, or some combination).

2) Designing for and Evaluating HAI: These problems have
been addressed from different directions. Techniques such as
cognitive work analysis [36] and cognitive task analysis [37],
[38] have been developed. Cognitive work analysis is concerned
with identifying constraints in the operational environment that
shape the mission goals of the human operator and can be used
to characterize automation (see, for example, [39]). Cognitive
task analysis is concerned with describing how (physically
and/or cognitively) human operators normatively and descrip-
tively perform goal-oriented tasks when interacting with an
automated system [40]-[42]. These techniques influence the
design of human-automation interfaces by identifying device
and environmental information to faciliate human interpretation
and the tasks to achieve system goals [43]-[45]. Techniques
involving human subject experiments allow analysts to evalu-
ate the effectiveness of different human-automation interactive
systems using a variety of metrics (see [46]—[50]) in real opera-
tional environments and part task simulations. Finally, a number
of cognitive, decision making, behavioral classification, and
modeling techniques have been developed to give analysts
means of performing manual, simulation, and statistical eval-
uations without the need for human subject experiments (see
[13], [51], [52]).

While these techniques are useful in finding and/or poten-
tially reducing the likelihood of HAI-related system failures,
they are not exhaustive and thus risk missing potentially dan-
gerous HAIs that could lead to system failures. Verification
techniques that fall under the banner of formal methods offer
means of performing appropriately scaled exhaustive analyses
that can augment existing methods. Sections II and III highlight
the advantages of such analyses.

B. Formal Verification

Formal verification is an analysis technique that falls in the
broader category of formal methods. Formal methods are a set
of well-defined mathematical languages and techniques for the

specification, modeling, and verification of systems [53]. Spec-
ifications are formulated to describe desirable system properties
in rigorous, unambiguous notations. Systems are modeled using
mathematically based languages that support well established
theoretical formalisms such as finite state automata, directed
graphs, Biichi automata, Petri nets, and p-calculus. The ver-
ification process mathematically proves whether the model
satisfies the specification. Formal verification has been used
successfully in a number of applications, particularly computer
hardware, where performance must be guaranteed. Two par-
ticular technologies, automated theorem proving and model
checking, have been useful for the formal verification of large
systems.

1) Automated Theorem Proving: Theorem proving is a de-
ductive technique that resembles traditional pencil-and-paper
proofs: from a set of axioms, using a set inference rules,
one builds theories and proves theorems to verify correctness
claims about the system under investigation with the help of
a proof assistant program. While theorem proving cannot be
fully automated in practice for more expressive logics (such as
higher order logics), some smaller fragments are amenable to
mechanized proofs. Satisfiability solvers [54] and satisfiability
modulo theories solvers [55] include powerful decision proce-
dures able to solve very complicated problems from areas such
as propositional logic and linear algebra.

2) Model Checking: Model checking is a highly automated
approach used to verify that a formal model of a system satisfies
a set of desired properties (a specification) [56]. A formal
model describes a system as a set of variables and transitions
between variable states. Specification properties are usually
represented in a temporal logic (discussed below) using the
formal system model variables to construct propositions. Ver-
ification is performed automatically by exhaustively searching
a system’s statespace to determine if these propositions hold. If
there is a violation, an execution trace called a counterexample
is produced. This counterexample depicts a model state (the
value of the model’s variables) corresponding to a specification
violation along with a list of the incremental model states
leading to the violation.

A temporal logic is a set of rules and symbols that allows
time to be expressed and reasoned about as part of a logical
framework: time is represented by an ordinal sequence of states
[57]. For model checking purposes, a temporal logic formula
is composed of Boolean propositions about the model variables
and modal operators. Modal operators usually specify the tem-
poral relationships between propositions. The two most com-
mon temporal logics (linear temporal logic and computation
tree logic) make use of the modal operators described in Table I.
There are different specification languages and/or modal logics
of which these operators represent the most common concepts.
See [57] for more detail.

3) Limitations of Formal Verification: While the mathe-
matical proofs offered by formal verification techniques are
extremely powerful, their use is limited by a variety of factors.
One of the major challenges facing model checking verification
is the state explosion problem. As more elements are incorpo-
rated into the system model, the memory and time required
to store the combinatorially expanding statespace can easily

490 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

TABLE 1
FREQUENTLY USED TEMPORAL LOGIC OPERATORS

Operator Type Name Usage Interpretation
Path Quantifier All Ay Starting from the current state, all future paths satisfy y.
Exists E v Starting from the current state, there is at least one path that satisfies .
Temporal Operator ~ NeXt Xy yis true in the next state of a given path.
Future F v v is eventually true in some future state of a given path.
Global G vy will always be true in a given path.
Until ¢ Uy ¢ will be true until y is true for a given path.

exceed the available resources. Symbolic model checking [58]
addresses this by using extremely efficient means of repre-
senting a system’s statespace. Other techniques allow select
portions of the statespace to be searched without compromising
the accuracy of the verification. The best known of these
depend on partial order reduction [59], symmetry [60], and
abstraction techniques such as abstract interpretation [61] and
counterexample-guided abstraction refinement [62]. However,
even with these efficient representations, model checking is still
limited in terms of the size of systems it can be used to evaluate.

A second limitation of model checking is the expressive
power of its modeling formalisms. Traditional model checking
is applied to systems that can be modeled with discrete vari-
ables. However, systems can have continuous quantities. While
the field of hybrid systems has been developed to address this
issue [63], current techniques can handle systems models with
no more than a half-dozen continuous variables. With respect to
the modeling of time, discrete-state models can be augmented
with a set of clocks [64]. While this technique can be used to
model clock synchronization problems in digital systems, only
more simple models can be fully verified.

In principle, theorem proving does not suffer from the same
limitations as model checking. However, theorem proving is not
a fully automated process: the analyst guides the proof while
exploiting automation to reuse routine proof techniques. The
more expressive the logic used to model and reason about the
system, the less automation is possible. Thus, theorem proving
requires significant effort by highly trained experts who guide
the verification process. Further, because the proof process must
be guided, theorem proving is less likely to find emergent
features that are not anticipated by the analyst.

A problem faced by all forms of formal verification is that of
model validity. To provide useful insights about actual systems,
the models used in formal verification need to be valid. If
they are not, the verification process has the potential to find
problems that may not exist in the actual system, or miss
problems that exist in the actual system but not the models.

C. Formal Verification of HAI

Researchers have used formal verification to evaluate HAI.
These techniques focus on abstract models from the HAI
literature that can be represented with discrete mathematical
models and used in analyses of a scope such that specific HAI
problems can be discovered. Prior analyses have investigated
potential problems with human-automation interfaces related to
both usability and mode confusion. They have also investigated
how task-analytic or cognitively plausible human behavior

may interact with other system automation or environmental
conditions to result in violations of desirable system properties.
We survey the literature as it relates to each of these topics.
For each covered approach, we present the theory behind it
and explain what types of problems it is meant to address.
We briefly present an illustrative example from the literature
that shows how the approach can be applied. We discuss the
major developments and limitations of each approach. Finally,
we discuss future ways in which formal verification (in general)
might be extended to the evaluation of HAI and how these types
of analyses may be used synergistically with more traditional
HALI evaluation and analysis techniques.

II. FORMAL VERIFICATION OF HUMAN-AUTOMATION
INTERFACE PROPERTIES

Formal verification has been used to evaluate properties of
human-automation interfaces. In the majority of these analyses,
the human-automation interface behavior is modeled formally
and properties related to the behavior of the interfaces (usually
analogous to desirable interface functionality or usability) are
checked against this model. A particular subset of human-
automation interface analyses are specifically concerned with
discovering if there is potential for mode confusion, and there
have been several approaches that address this specific problem.
However, before formal verification can occur, there must be a
formal model. Thus, in this section, we first describe the ways
in which human-automation interfaces have been modeled, then
discuss general human-automation interface verification, and
finally present the different mode confusion analyses.

A. Formal Modeling of Human-Automation Interfaces

The main ways formal models are represented are as
finite state transition systems or finite state machines.
Human-automation interfaces have been formally modeled as
finite state transition systems using different methods [65].
State charts [66] are formal transition systems that support hi-
erarchies, parallelism, and communication that have been used
to model interfaces [67], [68]. Interactors are object-oriented
interface building blocks that have an internal state and are ca-
pable of generating and responding to events [69]. Physiograms
are used exclusively for modeling physical device interfaces
[70]. Table and matrix specification paradigms like the opera-
tional procedure model [71] and ADEPT [72] define interfaces
based on their input—output behavior. Abstractions have been
developed for formally modeling human interfaces defined in
software development environments such as Visual Basic and

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 491

[Switch1 HumanAction = FlipSwitch1 R
Sa-
HumanAction = FlipSwitch1
SBien HumanAction = FlipSwitch?
(o A
HumanAction = FlipSwitch2
Light (Switch1 = Down A Switch2 = Up)
Vv (Switch1 = Up A Switch2 = Down)
e O
(Switch1 = Down A Switch2 = Down)
Vv (Switch1 = Up A Switch2 = Up)
o J

Fig. 1. Illustrative example of a formal (statechart) model of a human-
automation interface: a light with two switches. This model is composed of
three parallel finite state machines representing two light switches (switchl
and switch2) and the light itself (Light). In these representations, a rounded
rectangle represents a state, and a labeled arrow between rounded rectan-
gles represents a guarded transition between states. An arrow with a dotted
end indicates an initial state. The system receives human action inputs via
the HumanAction variable, which can indicate whether the operator has
flipped switch 1 or switch 2 (F'lipSwitchl and FlipSwitch2, respectively).
When the human operator flips a switch (HumanAction = FlipSwitchl
or HumanAction = FlipSwitch2) the corresponding switch will transition
between Up and Down. When only one switch is Up, the light is on. Otherwise,
the light is off.

Java Swing [73], [74]. Despite the diversity of modeling tech-
niques, all generally treat the interface as having a specific state
(a specific valuation of variables) that can transition to different
states based on human operator actions, device automation,
and/or environmental factors. Some paradigms (such as the
interactor) specifically model the rendering of information on
the interface display and thus explicitly model what information
is available to the operator in any given interface state.

Fig. 1 is a simple example of a formal human-automation
interface (a light with two switches) using state charts.

B. Formal Verification of Usability Properties

Work has focused on modeling human-automation interfaces
using formal constructs so that their correctness can be eval-
uated using formal verification. While these analyses do not
consider human models as part of the process, they provide
guarantees that the human-automation interface will behave in
the way it was intended and/or in ways that support safe HAI.

While some research has focused on specifically addressing
usability problems with particular classes of human-automation
interfaces,' there has been a trend toward classifying generic
temporal logic property patterns for these purposes. Campos
and Harrison [77] identified four related categories of properties
that could be expressed in temporal logic and thus formally

ISee [75], [76] for an example of how formal methods can be used to assess
the usability of multimodal, human-automation interfaces.

verified for human-automation interface models: 1) reachabil-
ity, 2) visibility, 3) task related, and 4) reliability. Reachability
properties make assertions about the ability of the interface to
eventually reach a particular state. Visibility properties assert
that visual feedback will eventually result from an action. Task-
related properties describe human behaviors that the interface
is expected to support: usually the ability to achieve a particular
goal represented by a state or set of states in the interface model.
Reliability properties describe desirable interface properties
that support safe HAI. Within each of these categories, specific
patterns have been identified for checking specific properties
(see Table II for some examples).

Thus, with a formal model of a human-automation interface,
an analyst can employ the usability property patterns from
Table II to formulate specification properties for a given ap-
plication. Formal verification can then be used to check that the
human-automation interface adheres to the properties.

Preliminary work in this area focused on applying these
techniques to dialog box-based interfaces. For example, Paterno
[80] explored the behavior of different dialog boxes composing
a desktop database system. However, these techniques are not
limited to dialog box-based interfaces: Campos and Harrison
[81] evaluated the air conditioning control panel of a Toyota
Corolla; Bolton [82] evaluated the programming interface of
a patient-controlled analgesia pump; and Feary [83] explored
cockpit interfaces to an autopilot.

An illustrative example can be found in [78] where Campos
and Harrison evaluated the interface to a medical syringe pump:
a device that delivers medication to a patient via a syringe based
on a prescription entered by a human operator. The prescription
is programmed into the device on a human-automation interface
containing a dynamic LCD screen and several buttons. To
assess the general reachability of the interface, Campos and
Harrison formulated temporal logic properties to show how to
get from each interface state to each other interface state. Thus,
for each pairing of 54 interface states, where X and Y represent
different interface states, a temporal logic property was gener-
ated which took the form in (1). This can be interpreted as “for
all possible paths through the model, if the interface is in state
X, then there is some future state when the interface will be in
state Y.

AG ((InterfaceState = X) = EF (InterfaceState=Y")). (1)

When all of these were checked against the formal model of
the human-automation interface, they all returned true. Thus,
Campos and Harrison were able to prove that the device sup-
ported general reachability.

In all of these approaches, any specification violation that
is discovered is not necessarily a usability problem; it simply
shows that a property suggestive of good usability was not
satisfied. As such, any violation needs to be examined by a
usability expert and/or explored with usability experiments.
The approach’s advantage is its ability to discover potential
problems previously undiscovered.

These approaches scale when human-automation interfaces
(particularly dialog box interfaces) are evaluated in isolation.
Abstraction techniques can further ensure scalability. However,
there are two barriers to more widespread adoption. It is not
standard practice to utilize formal modeling in the design of

492

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

TABLE 1I

FORMALLY VERIFIABLE INTERFACE SPECIFICATION PROPERTIES

Category Property Informal Description
Reachability ~ General reachability It is always possible to eventually reach a specific interface state from a given initial interface state [78].
State inevitability It will always be true that a specific interface state will eventually be reached [79].
Weak reachability A specific action will always result in a change in the interface state [80].
Strong reachability A specific action will allow for the possibility of a future change in interface state [80].
Visibility Feedback A specific action will always result in a change in interface state that is available to the human operator [80],

Continuous feedback

[81].
All human operator actions must produce a change in interface state that is available to the human operator
and must do so before any additional actions can be performed [80].

Task related

Weak task completeness
Strong task completeness

Weak task connectedness
Strong task connectedness

Undo / Reversibility

There is at least one action sequence from a specific initial interface state that will eventually achieve a
specific goal [79], [80].

For any given possible sequences of actions from a specific initial interface state, there is a set of additional
actions which will eventually achieve a specific goal [79].

From any interface state, there is at least one action sequence that will achieve a specific goal [79].

From any interface state, there is at least one action sequence that will eventually achieve a specific goal with
a specific final action [79].

The effects of a specific action can be undone with a single additional action or eventually undone with at
least one sequence of actions [79]-[81].

Reliability

Behavioral consistency
Rule set connectedness

Deadlock freedom
State floatability

A specific action will always result in a change in interface state that adheres to a specific characterization
[81].

There is at least one situation in which the interface supports the ability to perform a specific action through
the interface (such as clicking a button) [79].

The interface will never reach a state that will never accept human operator input [79].

The human operator can go from one specific interface state to another without ever reaching an undesirable

state [79].

human-automation interfaces. Also, temporal logic properties
can be difficult to formulate correctly, and (as was true in the
example above) a large number may be required.

To address the first problem, researchers have constructed
design and analysis environments that allow formal models to
be developed more easily. Degani ef al. [84] has shown how
design patterns can be used when constructing formal human-
automation interface models with state charts; Campos and
Harrison [78] have developed the IVY tool that allows human-
automation interface models (constructed from interactors) to
be graphically prototyped; Dwyer et al. have created tools
that allow human-automation interfaces defined in Visual Basic
and Java Swing to be automatically translated into formal
models [73], [74]; and ADEPT [72], [83] allows formal human-
automation interface models to be created using a matrix/table
interface that does not require knowledge of formal modeling
or computer programming.

The second problem is also being addressed. In addition to
patterns for specifying all of the different usability properties
from Table II [79]-[81], tool assistance has also been explored.
For example, IVY [78] and its precursor IFADIS [85] both
allow analysts to use usability temporal logic patterns for
reachability, visibility, and reliability properties to be easily
applied to models constructed in their environments. ADEPT
[83] offers the ability to evaluate visibility and reliability prop-
erties automatically. Bolton [82] introduced a method to au-
tomatically generate task-related properties from task analytic
behavior models.

C. Formal Verification and Mode Confusion

A specific extension of the work on the formal verification
of human-automation interfaces has focused on identifying
conditions in interfaces that could lead to mode confusion.

Some of these efforts are similar to the usability work dis-
cussed above in that they focus on formally verifying properties
against a formal model of the human-automation interface.
However, other efforts have included some rudimentary models
of the human operator as a means of gaining insights on mode
confusion.

1) Analyses Using Human-Automation Interface Models:
The first set of analyses focused on finding potential mode
confusion with only a model of the human-automation inter-
face and the basic underlying automation. Leveson ef al. [86]
identified a number of human-automation interface properties
that were associated with mode confusion (Table III).

Researchers [87]-[91] have explored how formal verification
processes with both model checkers and theorem provers can
find these types of conditions in formal models of human-
automation interfaces for medical devices, aircraft flight guid-
ance systems, and mode control panels. In the majority of these
evaluations, the analyses explore how transitions occur within
a model’s state space (for example, finding unexpected ways
of reaching off-normal states), attempting to discover if there
are situations in which human operator expectations about how
their actions impact the state of the interface (encoded in tempo-
ral logic) are satisfied by the interface (for finding unintended
side effects, indirect mode changes, operator authority limits,
and inconsistent behavior); determining when two interface
states display the same information (for finding conditions with
a lack of appropriate feedback); and determining if there are
interface states that do not properly represent the state of the
automation (also for human-automation interface states lacking
appropriate feedback).

For a simplified model of the modes in a flight guidance
system, Joshi et al. used both a model checker (NuSMV [92])
and a theorem prover (PVS [93]) to show how different mode
confusion problems could be discovered. Despite the example’s

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 493

TABLE 1II
SYSTEM AND INTERFACE PROPERTIES ASSOCIATED WITH MODE CONFUSION

Name

Description

Off-normal transitions

Unintended side effects

Indirect mode changes

Operator authority limits

Inconsistent behaviors

Lack of appropriate feedback
the system is in.

A system transitions into an “off-normal” state (one not associated with normal system operation).

A action does more than what was intended by the human operator.

A system changes state without human-operator input.

There are limitations on operator authority which result in operator actions being ignored in some contexts.

The same human action achieves different effects in different contexts.

The human-automation interface does not provide enough information for the human operator to determine what mode

simplicity, they were able to show how each entry in Table III
could be identified.

Using the IVY environment, Harrison [91] modeled an in-
fusion pump that automatically delivers medicine to a patient
intravenously. Different specification properties were formu-
lated to check for the mode confusion properties in Table III.
One of the most compelling addressed the lack of appro-
priate feedback. Specifically, Campos and Harrison identified
three messages displayed on the top line of the device’s LCD
screen (coded here as Messagl, Message2, and Message3)
that indicated medication delivery. They then ran a check to
ensure that these were necessary and sufficient for the pump
to be delivering medication, represented in temporal logic as
in (2).

(InfusionStatus = Infuse)
TopLine = Messagel

< | VTopLine = Message?2
VTopLine = Message3

AG 2

When this was checked against the formal model, it failed.
The counterexample revealed a specific scenario in which a
function key on the device could be pressed that would replace
the top line of the LCD with a different message while medica-
tion was being delivered. Thus, there was a state in which the
device’s display would not indicate that the pump was infusing,
allowing for potential mode confusion.

This type of formal verification can provide insights into
conditions that might result in mode confusion. However, the
models did not include any information regarding the human
operator’s knowledge about current and expected future system
states and/or future modes and modes changes. Therefore, it is
not clear that mode confusion will occur even if a violation is
found. To address this problem, two separate approaches allow
potential mode confusion to be explicitly discovered using
models of the human operator. Both are explored next.

2) Analyses Using Human Mental Models: In the first ap-
proach allowing for the explicit detection of mode confusion,
a human operator mental model of how the automation works
(presumably an abstraction) is formally modeled along with the
device or system automation.> The resulting composite model
is then checked (either manually or using model checking) to

2In these analyses, the human-automation interface model may be implicit
in the interaction between the mental model and the automation model (the
automation receives human actions and the mental model receives display in-
formation from the automation) or modeled explicitly as a finite state transition
system that interacts with the mental model and the automation model.

find inconsistencies between the human-device mental model
and the automation: when the human operator’s mental model
state does not match or is not the proper abstraction of the
automation model’s state. Degani, Heymann, Oishi et al. [67],
[94]-[96] showed how inconsistencies could be algorithmically
discovered between state chart representations of the human
operator’s mental model and device automation in a variety
of applications including an aircraft autopilot [67], a cruise
control system [94], and an aircraft auto-land system [95].
Sherry et al. [97] used matrix-based representations of both
the device automation’s input—output behavior and the human
operator’s mental model of that input—output behavior and
showed how they could be algorithmically compared to find
potential mode confusion for an aircraft’s mode control panel.
Rushby et al. [98], [99] used Mur$?[100] and Buth [101] used
FDR2 [102] to show how model checkers could be used to find
mode problems in the MD-88 autopilot.

These examples highlight situations where pilots may miss
mode transitions and misunderstand how particular modes or
mode transitions work. Most highly automated aircraft include
multiple pitch modes. The automation will automatically tran-
sition between these modes when it is trying to change and then
hold the aircraft’s altitude. A pitch hold mode, for example,
can maintain a particular pitch attitude until the aircraft climbs
(or descends) to the higher (or lower) commanded altitude.
Vertical speed mode can maintain a particular vertical speed
until the commanded altitude is reached. A flight level change
mode can maintain a particular airspeed until the commanded
altitude is reached. In both cases, if an altitude capture mode is
armed, an automatic transition to an altitude hold mode should
occur to maintain the commanded altitude once the desired
altitude is achieved. The interaction of the pitch modes and
the arming of altitude capture mode have been linked to mode
confusion and the violation of associated altitude clearances
[24]. Such scenarios are particularly dangerous because they
can allow an aircraft to climb into another aircraft’s airspace.
By constructing formal models representing an abstraction
of a pilot’s understanding of pitch modes and actual pitch
mode operations, researchers have been able to replicate con-
ditions that can lead to violations of altitude clearances [98],
[99], [101].

Because this approach requires the modeling of both the
device automation and the human operator’s mental model, it
is less scalable than the previous one only requiring a model
of the human-automation interface. It is not surprising that

3Pronounced MUR-fee.

494 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

the evaluated models have been fairly simplistic and/or ab-
stract. Given the discrete nature of formal models, many of
the systems that have been modeled are discrete in nature or
have been abstracted to be such. However, the use of hybrid
systems techniques have been explored to allow the dynamics
of aircraft to be included in these analyses [95], [96], [103].
Most recently, Rushby er al. [103] showed how emerging ab-
straction techniques can be used with an infinite bounded model
checker [104] to evaluate system models containing continuous
quantities. The authors demonstrated how a known problem
with an older version of the “speed protection” of an Airbus
A320 could be discovered with this method.

An extension of this approach has focused on ways of
generating human-automation interfaces that do not exhibit
properties associated with mode confusion. These methods
assume that the human operators must have the information
necessary to maintain a correct mental model through the
human-automation interface. Thus, a mental model represent-
ing an abstraction of the system’s device automation that
does not facilitate mode confusion can be interpreted as a
specification for the information content and behavior of the
human-automation interface. Crow et al. [105] discussed how
mental models constructed through results from questionnaires
can be progressively abstracted and/or refined and checked
with a model checker until a “safe minimal mental model” is
found: the smallest mental model that does not facilitate mode
confusion. Heymann and Degani [106] proposed an algorithmic
means of achieving such a model. First, a state chart represen-
tation of the system’s automation is constructed. Then, each
state is assigned to one of several specification classes: aggre-
gate states that the analyst hypothesizes the human operator
must distinguish between. This model is then systematically
reduced by combining states within specification classes in a
way that avoids inconsistencies indicative of mode confusion.
Combéfis and Pecheur [107] showed how such a process could
be performed automatically without the need for specification
classes. This approach has been further extended to allow the
machine learning algorithm to automatically learn a minimal
human-automation interface model from a device automation
model [108].

A limitation of this approach is that it assumes the human
operator creates a mental model of how the system’s automation
behaves, and this model can be represented as a formal finite
state transition system. Extracting such a model from a human
operator may be difficult, though several approaches have been
explored [105], [109]. Further, Norman [110] notes that actual
human operator mental models are incomplete, are difficult for
the human operator to “run,” are unstable, do not have firm
boundaries, are unscientific, and are “parsimonious” (overly
abstract to save on mental complexity).

3) Analyses Using Human Knowledge Models: Rather than
attempt to capture the operator’s mental model of how the
system works, a third approach uses formal models representing
the human operator’s knowledge about how he or she accom-
plishes goals with the system through the human-automation
interface [111]-[113] to find potential mode confusion. Ef-
fectively, human operators have knowledge about how they
accomplish goals with the system based on their experience and
their perceptual observations when interacting with the system.
These can be represented formally as processes (for example

see [114]). When paired with human-automation interface and
device automation models, a model checker can determine if
there are states in the system that block the human operator
process from accomplishing his or her goals or if there are
ways of achieving goals that do not match the procedures in
the operator’s knowledge. Both can result in mode confusion.
Wheeler [113] illustrated how such a method could be per-
formed manually to evaluate the alarm states of a digital alarm
clock. Bredereke and Lankenau [111], [112] and Bredereke
[115] automated this type of evaluation using communicating
sequential processes (CSP) [114] and the FDR2 model checker
[102]. Doing this, they were able to find a number of potential
mode confusion problems with the control system of an electric
wheel chair and various features of a telephone communication
system.

With a telephone system example, Bredereke [115] found
a number of potential mode confusions. One pertained to the
call waiting system. When someone is using a phone with call
waiting, the person knows that he or she can accomplish the
goal of putting callers on hold. However, phones may have a
feature that prevents emergency numbers (such as 911 in the
United States) from being put on hold. This can result in a
potentially dangerous mode confusion. Assume Person A calls
and talks to Person B. During the course of this conversation, A
decides that he or she needs to consult emergency help because
of a situation with B. A puts B on hold and calls 911 for
emergency help and is connected to Person C. A then wishes
to relay emergency information from C' to B by putting C' on
hold and talking to B. However, because C was reached via
an emergency number, C'cannot be put on hold and A cannot
relay the safety critical information back to B. The fact that A
is blocked from putting C' on hold indicates a mode confusion.

To be useful, this approach requires that analysts capture the
potentially imperfect knowledge the human operator has about
achieving goals with the system. Bredereke and Lankenau [112]
discuss several ways that this can be accomplished. Although
not currently explored, given that the knowledge being encoded
is procedural, such a method could exploit task analyses [37],
[38] for model development.

Javaux [116] investigated an automated means of construct-
ing realistic, imperfect knowledge models. Javaux starts with
a model that contains all of the knowledge the operator needs
to interact with the system. Then, by evaluating how often
human operators have to use specific knowledge, he allows the
rarely used section of the knowledge model to degrade based
on the theory of implicit learning. Javaux showed how this can
lead to knowledge models that facilitate mode confusion in an
autopilot system under rare operational conditions.

There are no studies that directly compare this approach to
the mental model approach discussed above. Thus, while both
explicitly model mode confusion in the human operator, it is
not clear which is more adept at discovering problems nor is it
clear which analysis will scale better.

III. FORMAL VERIFICATION OF SYSTEM PROPERTIES

The analyses presented in the previous section are con-
venient in that HAIs human-automation interfaces are often
easily represented as formal models. Further, the analyses are
inherently limited in scope, only being concerned with the

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 495

human-automation interface and thus avoiding the increases in
model size potentially associated with modeling the full system.
However, because human behavior is not explicitly modeled in
any of these techniques, they can only be used to find system
conditions theorized to be preconditions to system failures.
Another category of approaches have focused on identifying
how modeled human task analytic behavior can potentially
contribute to system problems beyond potential shortcomings
with the human-automation interface. When designing the pro-
cedures, displays, controls, and training associated with the
HALI of an automated system, human factors engineers use task
analytic methods to describe the normative human behaviors
required to control the system [38]. The resulting task analytic
models represent the mental and physical activities operators
use to achieve the goals the system was designed to support.
There are a number of different task analytic methods, and
thus many different forms that task analytic models can take.
However, a distinction can be made between models that are
primarily concerned with capturing the observable manifesta-
tion of human behavior (henceforth referred to as task models),
and those that are concerned with describing the cognitive
process that drives the observable human behavior (henceforth
referred to as cognitive models). Both types of models have
been used in formal verification analyses.

A. Formal Verification and Task Models

Task analytic models representing the observable manifesta-
tion of human behavior are typically structured as a hierarchy,
where activities decompose into other activities and (at the
lowest level) atomic actions. Task models such as concur-
tasktrees (CTT) [117], operator function model (OFM) [118],
enhanced OFM (EOFM) [119], user action notation (UAN)
[120], or AMBOSS [121] can be represented using discrete
graph structures as hierarchies of goal-directed activities that
ultimately decompose into atomic actions. In these models,
strategic knowledge (condition logic) controls when activities
can execute and modifiers between activities or actions control
how they execute in relation to each other. Because they can
be represented discretely, task models can be used to include
human behavior in formal system models along with other sys-
tem elements including device automation, human-automation
interfaces, and the operational environment [4], [122].

Some researchers have modeled human tasks in the em-
ployed analysis package’s formal notation. Degani et al. [123]
incorporated human task models into state chart models of
human-automation interfaces and used them to explore human
operator behavior during an irregular engine-start on an aircraft.
Basnyat et al. [124], [125] used a Petri net-based formalism
called interactive cooperative objects (ICO) to model human
task behavior as part of larger system models (a waste fuel
delivery plant and a satellite control system) to verify properties
critical to the system’s safe operation. Resolutions to discovered
problems came in the form of barrier systems to monitor
the system and prevent it from transitioning to unsafe states
[124] or through modification to operator training materials
[125]. Gunter et al. [126] encoded patterns of human task
behavior into CSP concurrently with system and environment

models (also encoded in CSP) to verify safety properties of
a portable automated identification and data capture device
used to identify and record data about patients and hospital
equipment. They showed that a “protection envelope” could
be incorporated into the system’s automation to ensure that the
modeled normative human task behavior would never result in
situations where incorrect or corrupted data could be entered
into the device.

These approaches require practitioners to encode tasks in
formal modeling languages. Thus, some researchers have used
more established task analytic modeling notations. These are
then translated into the needed formalism. Palanque et al.
[127] showed how task models written in UAN [120] could
be translated into ICO and used to verify task behaviors for
interacting with an automated teller machine (ATM). Fields
[128] developed a custom notation for modeling hierarchies of
activities in human tasks along with the temporal relationships
between them. Ait-Ameur et al. [129], [130] and Paterno and
Santoro [131] have translated CTT [117] into formal models
and performed formal verification with larger system models.
Ait-Ameur’s work used the Event B theorem prover to verify
human interaction with a software dialog box for converting
currencies. Paterno et al. translated CTT models of multiple
human operators managing runway traffic into LOTOS [132]
and then into a formal model where it could be checked as part
of a system model encompassing the behavior of the interface,
its automation, and the environment. Bolton and Bass et al.
[119] have developed EOFM (an extension of OFM [118]) as
a generic, XML-based task modeling language. They have also
developed a translator that converts EOFM models into code for
the Symbolic Analysis Laboratory [133] for use in the formal
verification of safety properties of larger system models. They
have applied their technique to a patient controlled analgesia
pump [122], [134], an automobile with a cruise control [119],
and a pilot performing the before landing checklist [4].

Bolton et al. [119] presented an example with an automobile
with a simple cruise control system. The cruise control system
had two buttons for enabling and disabling cruise. This system
was modeled as part of a general automobile driving interface
involving the accelerator and the brake pedals. The automobile
was modeled as moving down a highway with a traffic light
at the end. Midway along the highway was an area in which
traffic could merge. The driver could drive at a specific, desired
speed. A task model was created in EOFM. The driver could 1)
drive at the desired speed (by manipulating the accelerator and
brake pedals and/or the cruise control), 2) avoid merging traffic
(by speeding up or slowing down), and 3) respond to the the
traffic light based on its relative distance and color. An analysis
checked whether there could be a situation in which the driver
could run the traffic light. In temporal logic, this can be encoded
as shown in (3), interpreted as there should never be a condition
where the car is at the intersection when the light is red and the
car is not stopped

TrafficLightDistance = Atlntersection
ATrafficLight = Red)
ACar # Stopped

AG—

496 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

When checked with the complete system model, the spec-
ification property could be violated. An interpretation of the
counterexample [135] revealed that this occurred if: 1) the
driver reached his or her desired speed and enabled the cruise
control; 2) when the merging car arrived, the driver accelerated
to go ahead of it and stayed at that higher speed; 3) the driver
removed his or her foot from the gas pedal to respond to a red
traffic light; and 4) once the car slowed to the cruise speed, it
stayed at the cruise speed, causing the car to not stop at the
intersection.

While the majority of these types of analyses have focused
on systems that use a single human operator, progress has been
made on extending these techniques to multi-operator systems.
Paterno et al. [136] and colleagues identified three different
ways that collaborative human behavior could be incorporated
into formal task models: 1) A single task model could be created
describing the behavior of every human operator in the system;
2) Separate task models could be created for each human
operator with constructs being used to describe the coordinated
and communicative relationships between activities and actions
between operator tasks; and 3) A separate task model could
be created for each human operator but with the addition of a
shared structure which relates the coordinated and communica-
tive relationships between the activities and actions contained in
the separate models. Bass et al. [137] presented a fourth means
of accomplishing this: allowing separate tasks to be created
for each operator for activities not requiring coordination, and
allowing for separate shared tasks/activities that require multi-
operator coordination and communication.

These analyses are more limited by scalability than the
human-automation interfaces analyses. Since they are more
concerned with system failures, they require larger models
than those that are only concerned with human-automation
interfaces. Results from Bolton and Bass [122] indicate that
analyses only using task behavior models can reduce the overall
size of model state spaces when they are paired with large
system models. However, this may not be true for all models,
particularly those with multiple human operators.

Another potential limitation of this approach is that it does
not consider erroneous human behavior, which is often asso-
ciated with failures of human-automation interactive systems.
However, the community had taken steps to address this. Fields
[128], Bastide and Basnyat [138], Bolton et al. [139], Bolton
and Bass [140], Paternd and Santoro [141] have investigated
how patterns of erroneous behavior (based on the phenotypes
of erroneous actions [142]) can be manually incorporated into
task analytic behavior models. These models could then be
integrated with the analyses described above to use formal
verification to investigate whether these errors impact the ful-
fillment of specification properties. Bolton et al. [143] and
Bolton and Bass [144] have extended this work so that erro-
neous human behavior can be automatically generated in task
models, allowing analysts to determine how potentially erro-
neous human behavior can contribute to system failures without
having to anticipate which behaviors might be problematic. One
method [143] creates a task structure that generates zero-order
phenotypes of erroneous actions [142] for each action in the
task model, but limits the total number of possible erroneous
acts to an analyst specified maximum. The second method [144]
manipulates the interpretation of strategic knowledge in the

task model to replicate slips of attention [12], again limiting
the total number of erroneous behaviors with a maximum.
These methods were used to discover problems related to
controlling a medical radiation therapy machine [143] and a
patient controlled analgesia pump [144]. Unfortunately, such
analyses have the potential to reduce scalability, limiting the
maximum number of erroneous human behaviors that could be
considered in any given analysis. Such techniques also have the
disadvantage that they do not describe a cognitive mechanism
for any of the modeled erroneous behaviors.

B. Formal Verification and Cognitive Models

Different analyses have attempted to model task analytic
human behavior using high fidelity, albeit abstract, cognitive
architectures in formal verification. The goal has been to model
the cognitive process the operator employs to decide what
actions he or she will use to interact with the system. These
methods let the analyst to formally verify that the system will
always allow the operator to achieve his or her goals with a set
of cognitive behaviors. These methods can identify situations
where the human operator fails to achieve desired goals or
drives the system into dangerous operating conditions.

These cognitively based models of human behavior focus on
modeling the knowledge human operators use for interacting
with a system. The human operator’s cognitive state (a set
of variables) changes in response to the state of the human-
automation interface, the operation environment, or the oper-
ator’s current cognitive state according to a set of logically
defined production rules. Ultimately, this can result in rules
allowing the human operator to perform actions (themselves
represented by changes in variable values). The nature of these
models and the analyses they support are determined by the
cognitive architecture in which they are instantiated.

Lindsay, Connelly et al. [145], [146] used a cognitive ar-
chitecture called the operator choice model (OCM) specifically
created for an an en-route, air traffic control task, in which a hu-
man operator monitors an airspace and attempts to resolve po-
tential conflicts between aircraft. The OCM describes the pro-
cess human operators use to scan or search human-automation
interfaces for information (scan), determine if that information
is worthy of additional interest (classification), decide how to
proceed in light of the assessed information (decision making),
and execute a plan of actions (perform action). The cognitive
model was specified as a set of event-driven transitions (rules)
for each of these four processes, where control flows between
each of these processes in the cognitive model. The human-
automation interface and the operational environment (the state
of the airspace) were modeled as separate processes. Temporal
logic patterns were created for potential failures in the air traffic
control task: not resolving an actual conflict, resolving a non-
existent conflict, and creating a conflict where one previously
did not exist. Temporal logic properties specified that problems
in a specific cognitive process (scanning, classification, deci-
sion making, or action performance) could result in one of the
three failures. A model checker was used to determine if and in
what context any of these failures could occur.

While useful, the OCM model is limited in that it is only
relevant for air traffic control tasks and thus not generalizable.
However, Blandford, Curzon, et al. [147]-[150] have focused

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 497

on creating models around a more generic cognitive architec-
ture from programmable user models (PUMs) [151]. In these
models, the human operator has a set of goals he or she may
want to achieve with the system, and a set of actions to interact
with it. A set of rules (referred to as beliefs or knowledge)
define when a human operator may attempt to pursue a specific
goal based on the state of the human-automation interface, the
operational environment, or other goals being pursued. Actions
can ultimately be performed when a human operator commits
to applying one according to a specific rule. Note that in these
models, the human operator commits/decides to perform an
action before that action is actually executed. Such models
have been used with human initiated systems (where system
behavior is solely driven by its human operator) [148] and
evaluated using formal verification with both theorem provers
[149] and model checkers [152].

These formal PUM-based analyses have been used to ob-
tain different insights about systems. Butterworth et al. [149]
showed how specification properties related to system safety,
liveness, and usability could be investigated for a simple web
browsing task. Butterworth et al. [149] used PUMs and formal
verification with the same application to identify the type of
knowledge a human operator requires to successfully fulfill his
or her goals. These analyses have been extended to identify
cognitively plausible erroneous behaviors based on a human
operator model interacting with an automated system. These
include repetition of actions, omission of actions, committing
actions too early, replacing one action with another, performing
one or more actions out of order, and performing an unre-
lated action [34]. Means of identifying post-completion errors
(special types of omission errors in which the operator forgets
to perform actions that occur after the completion of a high-
level goal [33]) have also been identified and illustrated using
a model of a vending machine [35]. Design rules were applied
to address these errors, and their effectiveness was evaluated
using the same formal verification process [34], [35]. Work has
also investigated how to use these types of models to determine
when different types of operators (expert versus novice) may
commit errors when interacting with an ATM [153]. The archi-
tecture has been extended to a generic cognitive architecture
that models the effects of salience, cognitive load, and the
interpretation of spatial cues. It can assess whether they result
in erroneous human behavior when interacting with an ATM
machine [152], [154], [155]. Basuki et al. [156] used heuris-
tics for modeling human operator habituation, impatience, and
carefulness within such a cognitive architecture and illustrated
erroneous human behaviors for interacting with the vending
machine model from Curzon and Blandford [35].

Consider the ATM example from [153]. Curzon et al. for-
mally modeled cognitive rules for selecting primary goals
and secondary goals, selecting actions to achieve these goals,
performing actions, reactive behavior based on information
conveyed by the human-automation interface, and terminating
goals. For example, when interacting with the machine, the
human operator may have the primary goal of extracting cash
from the machine. However, he or she may also have secondary
goals related to obtaining a transaction receipt and having the
ATM card returned. There are a number of actions the human

operator needs to select and execute to perform his or her
goals. These include inserting the ATM card, entering the pin,
selecting an appropriate amount of cash, and so on. The model
has rules for defining how the operator can react to prompts
and alarms. The cognitive model can also have rules defining
when to terminate behavior once goals have been achieved.
The cognitive model was paired with a formal model of the
ATM. The entire system was evaluated with a theorem prover
[93] to uncover potential situations where the human operator
finishes interacting with the machine without completing all of
his or her goals. However, this verification procedure revealed
a post-completion error scenario in which it was possible for
the human operator to receive his or her cash and terminate
interaction with the machine (because the primary goal was
achieved) while leaving the ATM card in the machine (not
achieving a secondary goal). Curzon et al. then introduce an
improved machine design that requires the human operator to
retrieve the card before cash is dispensed. They then use the
theorem prover to show that the new design does not have the
previously discovered problem.

Masci et al. [157] have introduced a method for modeling
and evaluating distributed cognition in the PVS theorem prover
[93]. The models used by Masci et al. were primarily focused
on information flows between entities and the associated cog-
nitive processes for a simple model of the London Ambulance
Service. Given the nature of the approach, cognitive models of
individuals were kept very simple. Current effort is extending
these cognitive modeling approaches to multi-operator systems.
Future work will determine how well these cognitive modeling
approaches will scale.

All of the cognitive modeling approaches have a distinct
advantage over those that model only task behavior as analysts
can infer the cognitive reason for erroneous behavior. Addition-
ally, erroneous human behavior can arise organically from the
cognitive model rather than having to be specifically inserted or
generated in task analytic behavior models. However, cognitive
models are more difficult to construct than task analytic models.
To date, there have been no studies comparing the cognitive
modeling approaches to the task analytic behavior modeling
approaches, so it is not clear how they scale relative to each
other. Obviously, cognitive models have the potential to be
more complex, thus less likely to scale, than task models.
However, given the more naturalistic way that erroneous be-
havior is modeled in the cognitive approaches, it is possible that
cognitive model approaches will scale better than those based
on task models when erroneous behavior is the concern. Future
work should attempt to compare these approaches so that the
tradeoffs between them can be better understood.

IV. DISCUSSION AND FUTURE DEVELOPMENT

Formal verification offers possibilities for evaluating HAI not
offered by other analysis techniques (such as simulation and
testing) through its exhaustive means of proving or disproving
the validity of desirable properties. Thus it provides additional
ways of finding potential shortcomings in human-automation
interfaces and/or of discovering and diagnosing system failures
related to human operators.

498 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

The specific evaluation approaches discussed herein cover
the techniques the HAI community has successfully employed
despite the limitations of current formal verification technology.
Advances in formal methods are forthcoming and will support
new types of HAI analyses with formal verification. In this
section we discuss how advances in formal methods may ame-
liorate some of the current limitations of formal verification.
We also discuss how formal verification can be integrated into
other types of HAI analyses.

A. Advances in Formal Methods

1) Tradeoffs Between Techniques and Analysis Integration:
There are tradeoffs between the presented evaluation tech-
niques. The analyses of human-automation interfaces for us-
ability and mode confusion scale better than the larger system
analyses that use task and cognitive models. However, the
human-automation interface analyses only look for conditions
that could result in system problems rather than system prob-
lems themselves. Conversely, the system-level analyses that
utilize task models or cognitive models as part of larger formal
systems models are capable of discovering such problems.

The current state of the technology is such that many of
the presented techniques are not integrated. For example, an
analyst attempting to perform a system analysis using task
models will likely need to alter or re-implement the system
model to evaluate the human-automation interface. This is
largely due to the different components that are modeled in each
technique. Subtle differences between model elements shared
by the different techniques (such as the human-automation
interface) can exist because of the different interactions that
may occur between modeled elements. Some work has partially
addressed this issue. Environments such as IVY [78] allow
for a number of usability analyses to be performed. However,
these do not currently support the modeling of the human
operator. Bolton and Bass [122] have utilized an architectural
framework that separates system model elements to allow for
more flexible analyses. This has primarily been used in system
evaluations using task models [4], [119], [143], [144], but has
also been used to evaluation of human-automation interface
properties [82]. Ruk$énas and Curzon [158] have shown that
their cognitive modeling system can be used to find mode con-
fusion problems in addition to being used for system analyses.
However, what is needed is an integrated modeling environment
that will allow analysts to easily perform multiple analyses with
minimal changes between components. Such an environment
would allow analysts to take full advantage of the formal HAI
verification analyses that are currently available.

2) Model Validity and Design Integration: In the formal
methods community, languages like LUSTRE [159] and the as-
sociated Safety Critical Application Development Environment
[160] allow systems to be “correct by construction”: designers
specify models of embedded, reactive, synchronous systems;
formally verify them; and generate C and Ada code guaranteed
to exhibit the verified properties. This allows formal verification
to be integrated into the design of the end product, thus avoiding
problems of validity that can arise when formal models are
independent from designs.

There have been attempts to integrate the design of human-
automation interfaces into such integrated development envi-
ronments for the purpose of facilitating some of the analyses
discussed here. Several groups have adapted their modeling
frameworks to work with human-automation interfaces built
in Java and Visual Basic, thus allowing the actual software
implementations to be used in the formal analyses of human-
automation interfaces and system properties with human-task
behavior models [74], [78], [130]. Some have also shown
that it is possible to execute formal models as if they were
computer programs while allowing human operators to interact
with them [78], [130], [161]. They have used this ability to
experimentally validate human task behavior models against
actual human behavior, ensuring that the modeled human be-
havior conforms to the behavior exhibited by actual human
operators in human subject experiments. Similarly, such envi-
ronments allow human operators to interact with the human-
automation interfaces rendered in formal design environments
[72], [78], [83], [130], [161]. This can allow usability studies
to be conducted with human subjects. Masci et al. [157] have
used simulations of their formal distributed cognition mod-
els to allow subject matter experts to judge model validity.
Huang et al. [162] have shown how formal cognitive models
can be experimentally validated. Work on these types of inte-
grated development environments is in the early stages. Future
work could result in tools that transcend the boundaries between
modeling, design, and implementation.

3) Model Scalability: As formal modeling and verification
technology improves, the size of the systems they can ac-
commodate will increase. Additionally, future developments in
lightweight formal methods [163], [164] may prove useful as
they allow parts of a system to be formally modeled and verified
using compact modeling languages that can be quickly verified.
Formal architectural frameworks like the one used by Bolton
and Bass [122] (where a system is composed of separate formal
models of the human mission, human task behavior, human-
automation interface, device automation, and operational envi-
ronment) may be useful in such lightweight analyses as they
could allow certain system submodels to be eliminated for
certain analyses. Light weight modeling techniques like those
offered by ADEPT [72], [83] allow human operators to pro-
totype human-automation interface behavior and quckly check
a number of properties that might suggest problems with HAIL
Work related to formally modeling and reasoning about the role
of human behavior’s contribution to system failures in accident
reports [125], [165]-[168] may also suggest lightweight or
compositional analyses that only consider the safety critical
elements of systems. Emerging abstraction techniques [103]
will also help with scalability.

B. Supporting Other HAI Analyses With Formal Verification

Even with advances in formal methods, the state explosion
problem will most likely remain a limiting factor for model
checking analyses. Additionally, there has been little to no work
investigating how common HAI metrics like timing, workload
[169], [170], situation awareness [46], [171], trust [172], and
compromise [50] can be extracted from verification analyses.

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 499

Thus, the use of formal verification in the evaluation of human-
automation interactive systems may be more successful at
complementing other forms of HAI analyses. This would allow
the exhaustive nature of formal verification to complement the
advantages offered by simulation, experimentation, and human
performance modeling.

1) Formal Verification and Simulation: While formal veri-
fications are exhaustive, they do not scale well. On the other
hand, simulations are rarely exhaustive, but are much more
scalable. As such, some degree of success has been found
in using formal verification to selectively evaluate bounded
elements of a system within a simulation framework [173],
[174]. While these techniques have traditionally been used to
evaluate computer hardware, they could be adapted for use
in the evaluation of human-automation interactive systems. In
such a framework, simulations could be used evaluate large
systems and formal methods would be periodically applied to
the evaluation of human interaction with human-automation
interface. In fact, some work is already heading in this direction
[137], though more work is needed.

2) Formal Verification and Human Subject Experimentation:
Human subject testing has high face validity where actual
people interact with the real system. It also supports collection
of many human performance metrics. However, because condi-
tions that lead to system failure may occur under rare or unex-
pected conditions, human subject testing is a time consuming,
expensive, and inefficient way of finding human-automation
interactive problems that occur in these rare events. To this
end, formal verification could be used to influence the design of
human subject testing. By using formal task analytic models of
the human operator paired with an abstract model of the actual
system, formal verification could be used to exhaustively search
through the system to determine if there are conditions where
HAI could be potentially problematic. Analysts could then use
human subject testing to explore whether the potentially iden-
tified problems can actually occur and explore how to correct
them. Such a method offers advantages beyond using either of
these two techniques separately. The formal verification allows
for the entire system’s statespace to be exhaustively examined,
which cannot be done with human subjects. However, because
analyses will ultimately be investigated with human subjects,
the analyses will have higher face validity and system models
can be rendered more abstractly than they would be otherwise,
mitigating problems related to scalability.

3) Formal Verification and Human Performance Modeling:
Many of the analyses discussed here are of similar scope to
those of human performance modeling. Infrastructures such
as CogTool [175] allow analysts to specify human-automation
interfaces and human-task behavior using a simple point-and-
click interface. These are then coupled with a sophisticated
ACT-R [176] cognitive model that allows the analyst to pre-
dict how long the human operator will take to perform tasks
with the system. Given the formality with which these are
specified, it is likely they could be incorporated into the
formal verification analyses similar to those discussed here.
For example, RukSénas et al. [177] have investigated ways
of performing keystroke-level timing analysis (similar to that
used by KLM-GOMS [52]) with human behaviors generated

using their cognitive-modeling and formal verification infras-
tructure. Potential exists for further integrating human per-
formance modeling and formal verification analyses where
models of trust, situation awareness, and workload could be
integrated into formal models or, as with the timing analysis of
Ruksénas et al., the output of formal verifications could be
made to work with such models. Future work should attempt
to bridge the gap between these two areas.

REFERENCES

[1] BASI. (1998). Advanced technology aircraft safety survey report, Dept.
Transp. Regional Develop., BASI, Civic Square, Canberra, Australia,
Tech. Rep. [Online]. Available: http://www.atsb.gov.au/media/704656/
advancedtechnologyaircraftsafetysurveyreport.pdf

[2] FAA Human Factors Team. (1996). Federal aviation administration hu-
man factors team report on: The interfaces between flightcrews and
modern flight deck systems, Federal Aviation Admin., Washington,
DC, Tech. Rep. [Online]. Available: http://www.faa.gov/aircraft/air_cert/
design_approvals/csta/publications/media/flitcrews_fltdeck.pdf

[3] D. Hughes and M. Dornheim, “Accidents direct focus on cockpit au-
tomation,” Aviation Week Space Technol., vol. 142, no. 5, pp. 52-54,
Jan. 1995.

[4] M. L. Bolton and E. J. Bass, “Using model checking to explore checklist-
guided pilot behavior,” Int. J. Aviation Psychol., vol. 22, no. 4, 2012, to
be published.

[5] J.M. O’Hara, J. C. Higgins, W. S. Brown, R. Fink, J. Persensky, P. Lewis,
J. Kramer, A. Szabo, and M. A. Boggi, “Human factors considerations
with respect to emerging technology in nuclear power plants,” U.S.
Nucl. Regul. Comm., Washington, DC, Tech. Rep. NUREG/CR-6947,
2008.

[6] L. T.Kohn,J. Corrigan, and M. S. Donaldson, To Err Is Human: Building
a Safer Health System. Washington, DC: Nat. Acad. Press, 2000.

[7] P. Ladkin, AA965 Cali accident report: Near Buga, Colombia, Dec. 20,
1995, Bielefeld Univ., Bielefeld, Germany, 1996. [Online]. Available:
http://sunnyday.mit.edu/accidents/calirep.html

[8] E. Sekigawa and M. Mecham, “Pilots, A300 systems cited in Nagoya
crash,” Aviation Week Space Technol., vol. 145, no. 5, pp. 36-37,
Jul. 1996.

[9] “Grounding of the Panamanian passenger ship Royal Majesty on Rose
and Crown Shoal near Nantucket, Massachusetts June 10, 1995,” Nat.
Transp. Safety Board, Washington, DC, Tech. Rep. MAR-97/01, 1997.

[10] C. Perrow, Normal Accidents: Living With High-Risk Technologies.
Princeton, NJ: Princeton Univ. Press, 1999.

[11] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18—41, Jul. 1993.

[12] J. Reason, Human Error. New York: Cambridge Univ. Press, 1990.
[13] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,”
Rev. Human Factors Ergonom., vol. 1, no. 1, pp. 89-129, Jun. 2005.
[14] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types
and levels of human interaction with automation,” IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 30, no. 3, pp. 286-297, May 2000.

[15] L. Bainbridge, “Ironies of automation,” Automatica, vol. 19, no. 6,
pp. 775-779, Nov. 1983.

[16] E.Roth, K. Bennett, and D. Woods, “Human interaction with an “intelli-
gent” machine,” Int. J. Man-Mach. Stud., vol. 27, no. 5/6, pp. 479-525,
Nov. 1987.

[17] R. Parasuraman and V. Riley, “Humans and automation: Use, misuse,
disuse, abuse,” Human Factors, vol. 39, no. 2, pp. 230-253, 1997.

[18] P.J. Smith, C. E. McCoy, and C. Layton, “Brittleness in the design of
cooperative problem-solving systems: The effects on user performance,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 27, no. 3,
pp. 360-371, May 1997.

[19] S. A. Guerlain, P. J. Smith, J. H. Obradovich, S. Rudmann, P. Strohm,
J. W. Smith, J. Svirbely, and L. Sachs, “Interactive critiquing as a form
of decision support: An empirical evaluation,” Human Factors, vol. 41,
no. 1, pp. 72-89, Mar. 1999.

[20] D. A. Thurman and C. M. Mitchell, “An apprenticeship approach for the
development of operations automation knowledge bases,” in Proc. 44th
Annu. Meeting Human FactorsErgonom. Soc., 2000, pp. 231-234.

[21] D. A. Norman, “The problem with automation: Inappropriate feedback
and interaction, not over-automation,” Phil. Trans. Roy. Soc. London.
Ser. B, Biol. Sci., vol. 327, pp. 585-593, 1990.

500 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

[22] G. A. Jamieson and K. J. Vicente, “Designing effective human-
automation plant interfaces: A control-theoretic perspective,” Human
Factors, vol. 47, no. 1, pp. 12-34, Spring 2005.

[23] N. B. Sarter and D. D. Woods, “How in the world did we ever get into
that mode? Mode error and awareness in supervisory control,” Human
Factors, vol. 37, no. 1, pp. 5-19, Mar. 1995.

[24] E. Palmer, “‘Oops, it didn’t arm’—A case study of two automation
surprises,” in Proc. 8th Int. Symp. Aviation Psychol., 1995, pp. 227-232.

[25] A. Degani, M. Shafto, and A. Kirlik, “Modes in human-machine sys-
tems: Review, classification, and application,” Int. J. Aviation Psychol.,
vol. 9, no. 2, pp. 125-138, 1999.

[26] K. Funk, C. Suroteguh, J. Wilson, and B. Lyall, “Flight deck automation
and task management,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
1998, pp. 863-868.

[27] R. J. Mumaw, N. B. Sarter, and C. D. Wickens, “Analysis of pilots
monitoring and performance on an automated flight deck,” in Proc. 11th
Int. Symp. Aviation Psychol., 2001, [CD-ROM].

[28] N. B. Sarter, R. J. Mumaw, and C. D. Wickens, “Pilots’ monitoring
strategies and performance on automated flight decks: An empirical
study combining behavioral and eye-tracking data,” Human Factors,
vol. 49, no. 3, pp. 347-357, Jun. 2007.

[29] T. B. Sheridan, “Toward a general model of supervisory control,” in
Monitoring Behavior and Supervisory Control, T. B. Sheridan and
G. Johannsen, Eds. New York: Taylor & Fancis, 1976, pp. 271-282.

[30] D. D. Woods, “Cognitive demands and activities in dynamic fault man-
agement: Abductive reasoning and disturbance management,” in Human
Factors in Alarm Design, N. Stanton, Ed. Bristol, U.K.: Taylor &
Francis, 1994, pp. 63-92.

[31] K. L. Mosier and L. J. Skitka, “Human decision makers and automated
decision aids: Made for each other?” in Automation and Human
Performance: Theory and Applications, R. Parasuraman and
M. Mouloua, Eds. Philadelphia, PA: Lawrence Erlbaum Assoc.,
Inc., 1996, pp. 201-220.

[32] A. Blandford, R. Butterworth, and P. Curzon, “PUMA footprints: Link-
ing theory and craft skill in usability evaluation,” in Proc. INTERACT,
2001, pp. 577-584.

[33] M. D. Byrne and S. Bovair, “A working memory model of a common
procedural error,” Cogn. Sci., vol. 21, no. 1, pp. 31-61, Jan. 1997.

[34] P. Curzon and A. Blandford, “From a formal user model to design rules,”
in Proc. 9th Int. Workshop Interact. Syst. Design, Spec., Verification,
2002, pp. 1-15.

[35] P. Curzon and A. Blandford, “Formally justifying user-centered design
rules: A case study on post-completion errors,” in Proc. 4th Int. Conf.
Integr. Formal Methods, 2004, pp. 461-480.

[36] K. J. Vicente, Cognitive Work Analysis: Toward Safe, Productive, and
Healthy Computer-based Work. Philadelphia, PA: Lawrence Erlbaum
Assoc., Inc., 1999.

[37] J. M. Schraagen, S. F. Chipman, and V. L. Shalin, Cognitive Task
Analysis. Philadelphia, PA: Lawrence Erlbaum Assoc., Inc.,
2000.

[38] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London,
U.K.: Taylor & Francis, 1992.

[39] N. Mazaeva and A. M. Bisantz, “On the representation of automation
using a work domain analysis,” Theor. Issues Ergonom. Sci., vol. 8, no. 6,
pp- 509-530, Nov. 2007.

[40] D.B. Kaber, N. Segall, R. S. Green, K. Entzian, and S. Junginger, “Using
multiple cognitive task analysis methods for supervisory control inter-
face design in high-throughput biological screening processes,” Cogn.,
Technol. Work, vol. 8, no. 4, pp. 237-252, Oct. 2006.

[41] J. A. Adams, C. M. Humphrey, M. A. Goodrich, J. L. Cooper,
B. S. Morse, C. Engh, and N. Rasmussen, “Cognitive task analysis for
developing unmanned aerial vehicle wilderness search support,” J. Cogn.
Eng. Decision Making, vol. 3, no. 1, pp. 1-26, Mar. 2009.

[42] L. Sherry, M. Medina, M. Feary, and J. Otiker, “Automated tool for
task analysis of NextGen automation,” in Proc. Integr. Commun., Navig.
Surveillance Conf., 2008, pp. 1-9.

[43] G. A. Jamieson, C. A. Miller, W. H. Ho, and K. J. Vicente, “Integrating
task- and work domain-based work analyses in ecological interface de-
sign: A process control case study,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 37, no. 6, pp. 887-905, Nov. 2007.

[44] G. Jamieson, “Ecological interface design for petrochemical process
control: An empirical assessment,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 37, no. 6, pp. 906-920, Nov. 2007.

[45] F. Paterno, “Model-based design of interactive applications,” Intelli-
gence, vol. 11, no. 4, pp. 26-38, Dec. 2000.

[46] M. L. Bolton, E. J. Bass, and J. Raymond Comstock, “Spatial awareness
in synthetic vision systems: Using spatial and temporal judgments to

evaluate texture and field of view,” Human Factors, vol. 49, no. 6,
pp. 961-974, Dec. 2007.

[47] M. L. Bolton and E. J. Bass, “Comparing perceptual judgment and sub-
jective measures of spatial awareness,” Appl. Ergonom., vol. 40, no. 4,
pp. 597-607, Jul. 2009.

[48] M. R. Endsley, “Measurement of situation awareness in dynamic sys-
tems,” Human Factors, vol. 37, no. 1, pp. 65-84, 1995.

[49] D. B. Kaber and M. R. Endsley, “The effects of level of automation
and adaptive automation on human performance, situation awareness and
workload in a dynamic control task,” Theor. Issues Ergonom. Sci., vol. 5,
no. 2, pp. 113-153, Mar. 2004.

[50] E. J. Bass and A. R. Pritchett, “Human-automated judge learning: A
methodology for examining human interaction with information analysis
automation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38,
no. 4, pp. 759-776, Jul. 2008.

[51] M. D. Byrne and R. W. Pew, “A history and primer of human perfor-
mance modeling,” Rev. Human Factors Ergonom., vol. 5, no. 1, pp. 225—
263, Jun. 2009.

[52] B.E.John and D. E. Kieras, “Using GOMS for user interface design and
evaluation: Which technique?” ACM Trans. Comput. Human Interact.,
vol. 3, no. 4, pp. 287-319, Dec. 1996.

[53] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8-23, Sep. 1990.

[54] M. Davis, G. Logemann, and D. Loveland, “A machine program
for theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394-397,
Jul. 1962.

[55] L. de Moura, B. Dutertre, and N. Shankar, “A tutorial on satisfiability
modulo theories,” in Proc. 19th Int. Conf. Comput. Aided Verification,
2007, pp. 20-36.

[56] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: MIT Press, 1999.

[57] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoret-
ical Computer Science, J. Leeuwen, A. R. Meyer, M. Paterson, and D.
Perrin, Eds. Cambridge, MA: MIT Press, 1990, ch. 16, pp. 995-1072.

[58] J. R. Burch, E. M. Clarke, D. L. Dill, J. Hwang, and K. L. McMillan,
“Symbolic model checking: 1020 states and beyond,” Inf. Comput.,
vol. 98, no. 2, pp. 142—-171, Jun. 1992.

[59] G. Holzmann and D. Peled, “An improvement in formal verification,” in
Proc. 7th Int. Conf. Formal Descript. Tech., 1994, pp. 197-211.

[60] S. Graf and H. Saidi, “Verifying invariants using theorem proving,” in
Proc. 8th Int. Conf. Comput. Aided Verification, 1996, pp. 196-207.

[61] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. 4th ACM SIGACT-SIGPLAN Symp. Principles
Programm. Lang., 1977, pp. 238-252.

[62] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexam-
pleguided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752-794, Sep. 2003.

[63] T. A. Henzinger, “The theory of hybrid automata,” in Proc. 11th Annu.
IEEE Symp. Logic Comput. Sci., 1996, pp. 278-292.

[64] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,”
in Proc. REX Workshop, 1991, pp. 226-251.

[65] D. L. Parnas, “On the use of transition diagrams in the design of a user
interface for an interactive computer system,” in Proc. 24th Nat. ACM
Conf., 1969, pp. 379-385.

[66] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programm., vol. 8, no. 3, pp. 231-274, Jun. 1987.

[67] A. Degani and M. Heymann, “Formal verification of human-
automation interaction,” Human Factors, vol. 44, no. 1, pp. 28-43,
Spring 2002.

[68] H. Thimbleby, Press On: Principles of Interaction Programming.
Cambridge, MA: MIT Press, 2007.

[69] M. Harrison and D. Duke, “A review of formalisms for describing in-
teractive behaviour,” in Proc. Workshop Softw. Eng. Human-Comput.
Interact., 1995, pp. 49-75.

[70] A. Dix, M. Ghazali, S. Gill, J. Hare, and D. Ramduny-Ellis, “Physi-
grams: Modelling devices for natural interaction,” Formal Aspects Com-
put., vol. 21, no. 6, pp. 613-641, Nov. 2009.

[71] L. Sherry and J. Ward, “A formalism for the specification of opera-
tionally embedded reactive systems,” in Proc. 14th Digit. Avionics Syst.
Conf., 1995, pp. 416-421.

[72] L. Sherry and M. Feary, “Improving the aircraft cockpit user-interface:
Using rule-based expert system models,” PC Al, vol. 15, no. 6, pp. 21—
25, Nov. 2001.

[73] M. B. Dwyer, V. Carr, and L. Hines, “Model checking graphical user
interfaces using abstractions,” in Proc. 6th Eur. Softw. Eng. Conf., 1997,
pp. 244-261.

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION 501

[74] M. B. Dwyer, O. T. Robby, and W. Visser, “Analyzing interaction order-
ings with model checking,” in Proc. 19th IEEE Int. Conf. Autom. Softw.
Eng., 2004, pp. 154-163.

[75] N. Kamel and Y. Ait-Ameur, “A formal model for care usability proper-
ties verification in multimodal HCL,” in Proc. IEEE Int. Conf. Pervasive
Serv., 2007, pp. 341-348.

[76] N. Kamel, Y. Ait-Ameur, S. A. Selouani, and H. Hamam, “A formal
model to handle the adaptability of multimodal user interfaces,” in Proc.
Ist Int. Conf. Ambient Media Syst., 2008, pp. 1-7.

[77] J. C. Campos and M. Harrison, “Formally verifying interactive systems:
A review,” in Proc. 4th Int. Eur. Workshop Design, Spec., Verification
Interact. Syst., 1997, pp. 109-124.

[78] J. C. Campos and M. D. Harrison, “Interaction engineering using the
IVY tool,” in Proc. 1st ACM SIGCHI Symp. Eng. Interact. Comput. Syst.,
2009, pp. 35-44.

[79] G. D. Abowd, H. Wang, and A. F. Monk, “A formal technique for
automated dialogue development,” in Proc. Ist Conf. Des. Interact. Syst.,
1995, pp. 219-226.

[80] E. Paterno, “Formal reasoning about dialogue properties with au-
tomatic support,” Interact. Comput., vol. 9, no. 2, pp. 173-196,
Aug. 1997.

[81] J. C. Campos and M. D. Harrison, “Systematic analysis of control panel
interfaces using formal tools,” in Proc. 15th Int. Workshop Design, Veri-
fication Spec. Interact. Syst., 2008, pp. 72—-85.

[82] M. L. Bolton, “Validating human-device interfaces with model checking
and temporal logic properties automatically generated from task analytic
models,” in Proc. 20th Behav. Represent. Model. Simul. Conf., 2011,
pp. 130-137.

[83] M. Feary, “Automatic detection of interaction vulnerabilities in an ex-
ecutable specification,” in Proc. 7th Int. Conf. Eng. Psychol. Cogn.
Ergonom., 2007, pp. 487-496.

[84] A. Degani, A. Gellatly, and M. Heymann, “HMI aspects of automotive
climate control systems,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2011, pp. 1795-1800.

[85] K. Loer and M. D. Harrison, “An integrated framework for the analysis
of dependable interactive systems (IFADIS): Its tool support and evalu-
ation,” Autom. Softw. Eng., vol. 13, no. 4, pp. 469-496, 2006.

[86] N. G. Leveson, L. D. Pinnel, S. D. Sandys, and J. D. Reese, “Analyzing
software specifications for mode confusion potential,” in Proc. Workshop
Human Error Syst. Develop., 1997, [CD-ROM].

[87] R. W. Butler, S. P. Miller, J. N. Potts, and V. A. Carrefio, “A formal
methods approach to the analysis of mode confusion,” in Proc. 17th
Digit. Avionics Syst. Conf., 1998, pp. C41/1-C41/8.

[88] J. C. Campos and M. Harrison, “Model checking interactor spec-
ifications,” Autom. Softw. Eng., vol. 8, no. 3, pp. 275-310,
Aug. 2001.

[89] G. Liittgen and V. Carrefio, “Analyzing mode confusion via model
checking,” in Proc. Theor. Pract. Aspects SPIN Model Check., 1999,
pp. 120-135.

[90] A.Joshi, S. P. Miller, and M. P. E. Heimdahl, “Mode confusion analysis
of a flight guidance system using formal methods,” in Proc. 22nd Digit.
Avionics Syst. Conf., Oct. 2003, pp. 2.D.1-1-2.D.1-12.

[91] J. C. C. M. D. Harrison, “Modelling and analysing the interactive be-
haviour of an infusion pump,” in Proc. 4th Int. ECEASST, Potsdam,
Germany, 2011.

[92] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new
symbolic model verifier,” in Proc. 11th Int. Conf. Comput. Aided Verifi-
cation, 1999, pp. 682—688.

[93] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in Proc. 11th Int. Conf. Autom. Deduct., 1992, pp. 748-752.

[94] A. Degani, Taming HAL: Designing Interfaces Beyond 2001. New
York: Macmillan, 2004.

[95] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid
verification of an interface for an automatic landing,” in Proc. 41st IEEE
Conf. Decis. Control, 2002, pp. 1607-1613.

[96] M. Oishi, I. Hwang, and C. Tomlin, “Immediate observability of discrete
event systems with application to user-interface design,” in Proc. 42nd
IEEE Conf. Decision Control, 2003, pp. 2665-2672.

[97] L. Sherry, M. Feary, P. Polson, and E. Palmer, “Formal method for
identifying two types of automation-surprises,” Honeywell, Phoenix,
AZ, Tech. Rep. C69-5370-016, 2000.

[98] J. Rushby, J. Crow, and E. Palmer, “An automated method to detect
potential mode confusions,” in Proc. 18th Digit. Avionics Syst. Conf.,
1999, pp. 4.B.2-1-4.B.2-6.

[99] J. Rushby, “Using model checking to help discover mode confusions
and other automation surprises,” Rel. Eng. Syst. Safety, vol. 75, no. 2,
pp. 167-177, 2002.

[100] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol veri-
fication as a hardware design aid,” in Proc. IEEE Int. Conf. Comput.
Design—VLSI Comput. Process., 1992, pp. 522-525.

[101] B. Buth, “Analyzing mode confusion: An approach using FDR2,”
in Proc. 23rd Int. Conf. Comput. Safety, Rel., Security, 2004
pp. 101-114.

[102] Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2
User Manual, Formal Syst. (Europe) Ltd., Oxford, UK., , 2005, 6th ed.
[Online]. Available: http://www.fsel.com/fdr2_manual.html

[103] E. J. Bass, K. M. Feigh, E. Gunter, and J. Rushby, “Formal modeling
and analysis for interactive hybrid systems,” in Proc. 4th Int. ECEASST,
Potsdam, Germany, 2011.

[104] L. de Moura, H. RueB, and M. Sorea, “Lazy theorem proving for
bounded model checking over infinite domains,” in Proc. 18th Int. Conf.
Autom. Deduct., 2002, pp. 438-455.

[105] J. Crow, D. Javaux, and J. Rushby, “Models and mechanized methods
that integrate human factors into automation design,” in Proc. Int. Conf.
Human-Comput. Interact. Aeronaut., 2000, pp. 163—168.

[106] M. Heymann and A. Degani, “Formal analysis and automatic generation
of user interfaces: Approach, methodology, and an algorithm,” Human
Factors, vol. 49, no. 2, pp. 311-330, Apr. 2007.

[107] S. Combéfis and C. Pecheur, “A bisimulation-based approach to the
analysis of human-computer interaction,” in Proc. ACM SIGCHI Symp.
Eng. Interact. Comput. Syst., 2009, pp. 101-110.

[108] S. Combéfis, D. Giannakopoulou, C. Pecheur, and M. Feary, “A formal
framework for design and analysis of human-machine interaction,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., 2011, pp. 1801-1808.

[109] J. Canas, A. Antoli, and J. Quesada, “The role of working memory on
measuring mental models of physical systems,” Psicoldgica, vol. 22,
no. 1, pp. 25-42, 2001.

[110] D. Norman, “Some observations on mental models,” in Mental Models,
D. Gentner and A. L. Stevens, Eds. Mahwah, NJ: Lawrence Erlbaum
Assoc. Inc, 1983, pp. 7-14.

[111] J. Bredereke and A. Lankenau, “A rigorous view of mode confusion,” in
Proc. 21st Int. Conf. Comput. Safety, Rel., Security, 2002, pp. 19-31.

[112] J. Bredereke and A. Lankenau, “Safety-relevant mode confusions—
modelling and reducing them,” Rel. Eng. Syst. Safety, vol. 88, no. 3,
pp. 229-245, 2005.

[113] P. H. Wheeler, “Aspects of automation mode confusion,” M.S. thesis,
MIT, Cambridge, MA, 2007.

[114] C. A.R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666-677, Aug. 1978.

[115] J. Bredereke, “On preventing telephony feature interactions which are
shared-control mode confusions,” in Feature Interactions in Telecom-
munications and Software Systems VII. Lansdale, PA: IOS Press, 2003,
pp. 159-176.

[116] D. Javaux, “A method for predicting errors when interacting with fi-
nite state systems. How implicit learning shapes the user’s knowledge
of a system,” Rel. Eng. Syst. Safety, vol. 75, no. 2, pp. 147-165,
Feb. 2002.

[117] E. Paterno, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A diagram-
matic notation for specifying task models,” in Proc. IFIP TC13 Int. Conf.
Human-Comput. Interact., 1997, pp. 362-369.

[118] C. M. Mitchell and R. A. Miller, “A discrete control model of operator
function: A methodology for information dislay design,” IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 16, no. 3, pp. 343-357,
May 1986.

[119] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach
to model checking human-automation interaction using task-analytic
models,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41,
no. 5, pp. 961-976, Sep. 2011.

[120] H. R. Hartson, A. C. Siochi, and D. Hix, “The UAN: A useroriented
representation for direct manipulation interface designs,” ACM Trans.
Inf. Syst., vol. 8, no. 3, pp. 181-203, Aug. 1990.

[121] M. Giese, T. Mistrzyk, A. Pfau, G. Szwillus, and M. Detten, “AMBOSS:
A task modeling approach for safety-critical systems,” in Proc. 2nd Conf.
Human-Centered Softw. Eng. 7th Int. Workshop Task Models Diag.,
2008, pp. 98-109.

[122] M. L. Bolton and E. J. Bass, “Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs,” Innov.
Syst. Softw. Eng., A NASA J., vol. 6, no. 3, pp. 219-231, 2010.

[123] A. Degani, M. Heymann, and M. Shafto, “Formal aspects of procedures:
The problem of sequential correctness,” in Proc. 43rd Annu. Meeting
Human Factors Ergonom. Soc., 1999, pp. 1113-1117.

[124] S. Basnyat, P. Palanque, B. Schupp, and P. Wright, “Formal sociotech-
nical barrier modelling for safety-critical interactive systems design,”
Safety Sci., vol. 45, no. 5, pp. 545-565, Jun. 2007.

502 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013

[125] S. Basnyat, P. A. Palanque, R. Bernhaupt, and E. Poupart, “Formal
modelling of incidents and accidents as a means for enriching training
material for satellite control operations,” in Proc. Joint ESREL/17th
SRA-Eur. Conf., 2008, [CD-ROM].

[126] E. L. Gunter, A. Yasmeen, C. A. Gunter, and A. Nguyen, “Specifying
and analyzing workflows for automated identification and data capture,”
in Proc. 42nd Hawaii Int. Conf. Syst. Sci., 2009, pp. 1-11.

[127] P. A. Palanque, R. Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in
Proc. IFIP TC2/WG2.7 Work. Conf. Eng. Human-Comput. Interact.,
1996, pp. 189-212.

[128] R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, Univ. York, York, U.K., 2001.

[129] Y. Ait-Ameur, M. Baron, and P. Girard, “Formal validation of
HCI user tasks,” in Proc. Int. Conf. Softw. Eng. Res. Pract., 2003,
pp. 732-738.

[130] Y. Ait-Ameur and M. Baron, “Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model,” In.
J. Softw. Tools Technol. Transf., vol. 8, no. 6, pp. 547-563, 2006.

[131] E. Paterno and C. Santoro, “Integrating model checking and HCI tools
to help designers verify user interface properties,” in Proc. 7th Int.
Workshop Design, Spec., Verification Interact. Syst., 2001, pp. 135-150.

[132] P. V. Eijk and M. Diaz, Eds., Formal Description Technique LOTOS:
Results of the Esprit Sedos Project. New York: Elsevier, 1989.

[133] L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Comput. Sci. Lab., SRI Int., Menlo Park, CA, Tech. Rep. CSL-01-01,
2003.

[134] M. L. Bolton and E. J. Bass, “A method for the formal verification
of human interactive systems,” in Proc. 53rd Annu. Meeting Human
Factors Ergonom. Soc., 2009, pp. 764-768.

[135] M. L. Bolton and E. J. Bass, “Using task analytic models to visual-
ize model checker counterexamples,” in Proc. Int. Conf. Syst., Man,
Cybern., 2010, pp. 2069-2074.

[136] F. Paterno, C. Santoro, and S. Tahmassebi, “Formal model for coopera-
tive tasks: Concepts and an application for en-route air traffic control,”
in Proc. 5th Int. Conf. Design, Spec., Verification Interact. Syst., 1998,
pp. 71-86.

[137] E. J. Bass, M. L. Bolton, K. Feigh, D. Griffith, E. Gunter, W. Mansky,
and J. Rushby, “Toward a multi-method approach to formalizing human-
automation interaction and human-human communications,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern., 2011, pp. 1817-1824.

[138] R. Bastide and S. Basnyat, “Error patterns: Systematic investigation of
deviations in task models,” in Proc. 5th Int. Workshop Task Models
Diagr. Users Interf. Design, 2007, pp. 109-121.

[139] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods
to predict human error and system failures,” in Proc. 2nd Int. Conf. Appl.
Human Factors Ergonom., 2008, [CD-ROM].

[140] M. L. Bolton and E. J. Bass, “Formal modeling of erroneous human
behavior and its implications for model checking,” in Proc. 6th NASA
Langley Formal Methods Workshop, 2008, pp. 62—64.

[141] F. Paterno and C. Santoro, “Preventing user errors by systematic analysis
of deviations from the system task model,” Int. J. Human-Comput. Stud.,
vol. 56, no. 2, pp. 225-245, Feb. 2002.

[142] E. Hollnagel, “The phenotype of erroneous actions,” Int. J. Man-Mach.
Stud., vol. 39, no. 1, pp. 1-32, Jul. 1993.

[143] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phenotypi-
cal erroneous human behavior to evaluate human-automation interaction
using model checking,” Int. J. Human- Comput. Stud., 2012, to be
published. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1071581912000997

[144] M. L. Bolton and E. J. Bass, “Evaluating human-automation interaction
using task analytic behavior models, strategic knowledge based erro-
neous human behavior generation, and model checking,” in Proc. [EEE
Int. Conf. Syst., Man, Cybern., 2011, pp. 1788-1794.

[145] A. Cerone, P. A. Lindsay, and S. Connelly, “Formal analysis of human
computer interaction using model-checking,” in Proc. 3rd IEEE Int.
Conf. Softw. Eng. Formal Methods, 2005, pp. 352-362.

[146] P. Lindsay and S. Connelly, “Modelling erroneous operator behaviours
for an air-traffic control task,” in Proc. 3rd Australas. User Interf. Conf.,
2002, vol. 7, pp. 43-54.

[147] A. Blandford, R. Butterworth, and J. Good, “Users as rational interacting
agents: Formalising assumptions about cognition and interaction,” in
Proc. 4th Int. Eurograph. Workshop, Design, Spec. Verification Interact.
Syst., 1997, vol. 97, pp. 45-60.

[148] A. Blandford, R. Butterworth, and P. Curzon, “Models of interactive
systems: A case study on programmable user modelling,” Int. J. Human-
Comput. Stud., vol. 60, no. 2, pp. 149-200, Feb. 2004.

[149] R. Butterworth, A. Blandford, and D. Duke, “The role of formal proof in
modelling interactive behaviour,” in Proc. 5th Int. Eurograph. Workshop
Des., Spec. Verification Interact. Syst., 1998, pp. 87-101.

[150] R. Butterworth, A. Blandford, and D. Duke, “Demonstrating the cog-
nitive plausibility of interactive system specifications,” Formal Aspects
Comput., vol. 12, no. 4, pp. 237-259, 2000.

[151] R. M. Young, T. R. G. Green, and T. Simon, “Programmable user models
for predictive evaluation of interface designs,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst., 1989, pp. 15-19.

[152] R. Ruksenas, P. Curzon, J. Back, and A. Blandford, “Formal modelling
of cognitive interpretation,” in Proc. 13th Int. Workshop Des., Spec.,
Verification Interact. Syst., 2007, pp. 123—136.

[153] P. Curzon, R. Ruksénas, and A. Blandford, “An approach to formal
verification of human computer interaction,” Formal Aspects Comput.,
vol. 19, no. 4, pp. 513-550, Oct. 2007.

[154] R. Ruksenas, J. Back, P. Curzon, and A. Blandford, “Formal modelling
of salience and cognitive load,” in Proc. 2nd Int. Workshop Formal
Methods Interact. Syst., 2008, pp. 57-75.

[155] R.Ruksénas, J. Back, P. Curzon, and A. Blandford, “Verification-guided
modelling of salience and cognitive load,” Formal Aspects Comput.,
vol. 21, no. 6, pp. 541-569, Nov. 2009.

[156] T. A. Basuki, A. Cerone, A. Griesmayer, and R. Schlatte, “Model check-
ing user behaviour using interacting components,” Formal Aspects Com-
put., vol. 21, no. 6, pp. 571-588, 2009.

[157] P. Masci, P. Curzon, A. Blandford, and D. Furniss, “Modelling dis-
tributed cognition systems in PVS,” in Proc. 4th Int. Workshop EASST,
Potsdam, Germany, 2011.

[158] R. Ruk$énas and P. Curzon, “Abstract models and cognitive mismatch
in formal verification,” in Proc. 4th Int. Workshop EASST, Potsdam,
Germany, 2011.

[159] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proc. IEEE, vol. 79, no. 9,
pp. 1305-1320, Sep. 1991.

[160] P. A. Abdulla, J. Deneux, G. Stalmarck, H. Agren, and O. Akerlund,
“Designing safe, reliable systems using scade,” in Proc. Ist Int. Symp.
Leveraging Appl. Formal Methods, 2006, pp. 115-129.

[161] R.Bastide, D. Navarre, and P. Palanque, “A tool-supported design frame-
work for safety critical interactive systems,” Interact. Comput., vol. 15,
no. 3, pp. 309-328, Jul. 2003.

[162] H. Huang, R. Ruk$énas, M. G. A. Ament, P. Curzon, A. L. Cox, A.
Blandford, and D. Brumby, “Capturing the distinction between task and
device errors in a formal model of user behaviour,” in Proc. 4th Int.
Workshop EASST, Potsdam, Germany, 2011.

[163] R. C. Boyatt and J. E. Sinclair, “A “lightweight formal methods” per-
spective on investigating aspects of interactive systems,” in Pre-Proc.
2nd Int. Workshop Formal Methods Interact. Syst., 2007, pp. 35-50.

[164] D. Jackson, “Lightweight formal methods,” in Proc. Int. Symp. Formal
Methods Eur., Formal Methods Increasing Softw. Productiv., 2001, p. 1.

[165] S. Basnyat, N. Chozos, C. W. Johnson, and P. A. Palanque, “Incident
and accident investigation techniques to inform model-based design of
safety-critical interactive systems,” in Proc. Int. Workshop Des., Spec.
Verification Interact. Syst., 2006, pp. 51-66.

[166] C. W. Johnson, “The formal analysis of human-computer interaction
during accident investigations,” in Proc. Conf. People Comput. IX, 1994,
pp. 285-297.

[167] C. W. Johnson and A. J. Telford, “Extending the application of formal
methods to analyse human error and system failure during accident
investigations,” Softw. Eng. J., vol. 11, no. 6, pp. 355-365, Nov. 1996.

[168] C. W. Johnson, “The application of user modeling techniques to reason
about the human contribution to major accidents,” in Proc. 7th Int. Conf.
User Model., 1999, pp. 13-22.

[169] D. B. Kaber and J. M. Riley, “Adaptive automation of a dynamic control
task based on secondary task workload measurement,” Int. J. Cogn.
Ergonom., vol. 3, no. 3, pp. 169-187, 1999.

[170] B. Hilburn, P. G. Jorna, E. A. Byrne, and R. Parasuraman, “The effect
of adaptive air traffic control (ATC) decision aiding on controller mental
workload,” in Human-Automation Interaction: Research and Practice,
M. Mouloua and J. Koonce, Eds. Mahwah, NJ: Lawrence Erlbaum
Assoc., Inc., 1997, pp. 84-91.

[171] M. Endsley, “Toward a theory of situation awareness in dynamic sys-
tems,” Human Factors, vol. 37, no. 1, pp. 32-64, 1995.

[172] J. Lee and N. Moray, “Trust, control strategies and allocation of function
in human-machine systems,” Ergonomics, vol. 35, no. 10, pp. 1243—
1270, Oct. 1992.

[173] A.Hu, “Simulation vs. formal: Absorb what is useful; reject what is use-
less,” in Proc. 3rd Int. Haifa Verification Conf. Hardw. Softw., Verification
Testing, 2008, pp. 1-7.

BOLTON et al.: USING FORMAL VERIFICATION TO EVALUATE HUMAN-AUTOMATION INTERACTION

[174]

[175]

[176]

[177]

J. Yuan, J. Shen, J. Abraham, and A. Aziz, “On combining formal and
informal verification,” in Proc. 9th Int. Conf. Comput. Aided Verification,
1997, pp. 376-387.

B. E. John, CogTool User Guide. Pittsburgh, PA: Carnegie Mellon
Univ.

J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A theory of higher
level cognition and its relation to visual attention,” Human-Comput.
Interact., vol. 12, no. 4, pp. 439-462, 1997.

R. Ruksénas, P. Curzon, A. Blandford, and J. Back, “Combining human
error verification and timing analysis,” in Proc. Conf. Eng. Interact. Syst.,
2009, pp. 18-35.

Matthew L. Bolton (S’05-M’10) received the B.S.
degree in computer science, the M.S. and Ph.D.
degrees in systems engineering from the University
of Virginia, Charlottesville, VA.

Currently, he is an Assistant Professor with
the Department of Mechanical and Industrial
Engineering at the University of Illinois at Chicago.
His research interests include human-automation
interaction, human-performance modeling, systems
engineering, task analytic human behavior models,
and the applications of formal methods within these

domains.

503

Ellen J. Bass (M’98-SM’03) received the B.S.Eng.
and B.S.Econ. degrees from the University of
Pennsylvania, Philadelphia, PA, the M.S. de-
gree from the State University of New York at
Binghamton, and the Ph.D. degree from the Georgia
Institute of Technology, Atlanta, GA.

Currently, she is a Professor with the College of
Information Science and Technology and College
of Nursing and Health Professions, Drexel Univer-
sity, Philadelphia, PA. Her research focuses on char-
acterizing human judgment and decision making,

modeling human judgment when supported by information automation, and
computational models of human-human and human-automation interaction.

Radu I. Siminiceanu received the B.S. and M.S.
degrees in computer science from the University of
TaBi, IaBi, Romania, and the Ph.D. degree in com-
puter science from the College of William and Mary,
Williamsburg, VA, in 2003.

Currently, he is a Senior Research Scientist at the
National Institute of Aerospace, Hampton, VA, USA.
His research interests include formal methods, in
particular model checking, applied to aerospace, air
traffic management, and avionics systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

