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 System Failure is Complex 
 

 

 Interactions between system  
components results in  
breakdowns 
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 Human-automation Interaction: 

 A major contributor to failures in  
safety critical systems 
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Medicine 

44,000 and 98,000 deaths and 
1,000,000 injuries a year 

Aviation 

75.5% accidents in general aviation and  
~ 50% in commercial aviation 

Highway Safety 

75% of all roadway crashes 



 Traditional analysis and evaluation 
techniques can miss human 
interactions that could lead  
to system failure 
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 Computer hardware and 
software engineers have 
similar problems 



 Formal Methods: 

 Tools and techniques for proving that a 
system will always perform as intended 
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“You want proof? I’ll give you proof!” 



 Formal Methods: 

 Tools and techniques for proving that a 
system will always perform as intended 

 

– Modeling – Representing a system’s  
behavior in a mathematical formalism 
 

– Specification – Formally expressing a 
desirable property about the system 
 

– Verification – Proving that the model 
adheres to the specification 
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 Model checking: 

 An automatic means of performing  
formal verification 
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A Finite State Machine Model 
Represents System Behavior 

Variable 1 

Variable N 



 Model checking: 

 An automatic means of performing  
formal verification 
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A Temporal Logic Specification Property Asserts 
Desirable Qualities About the System 

 

For example: “The system should never reach unsafe state X” 
G ¬ (X) 

 

Or, “The system should always eventually reach state Y” 
F Y 

 



 Model checking: 

 An automatic means of performing  
formal verification 
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A model checker “searches” 
through the model’s statespace 

looking for violations  



 Model checking: 

 An automatic means of performing  
formal verification 
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A confirmation or 
counterexample is 

returned 



Counterexample 

A sequence of states that lead up to a violation 

… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Variable 1 

Variable N 
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Counterexample 

A sequence of states that lead up to a violation 

… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Variable 1 

Variable N 
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Model Checking Really Works!! 
Used to prove that a floating point 
division bug was removed from the 

design of the Intel Pentium processor  

Used to stabilize Windows by 
allowing hardware creators to 
model check that their drivers 

adhered to the required protocol 



Let’s dig into this a little more … 

 



Modeling 

You want to model system behavior with robust 
mathematics 
• This can be many things 
• Usually, this means using a finite state transition 

system: 
– System has a finite number of states 
– There are a set of initial states 
– There are inputs 
– States transition between each other based on the inputs 

or other indicators of state 
– States and/or transitions can map to outputs 



Modeling 

Automata theory offers many finite state 
machine constructs: 

• Deterministic finite state machines 

• Nondeterministic finite state machines 

• Mealy machines 

• Moore machines 

• Etc. 



Modeling 

However, most analyst use more expressive notations 
(expressively identical, but often easier to work with): 

• State Charts 

• Petri Nets 

• Special formal modeling languages  
(promella, SMV, SAL, etc.)  



Modeling 

However, most analyst use more expressive notations 
(expressively identical, but often easier to work with): 

• State Charts 

• Petri Nets 

• Special formal modeling languages  
(promella, SMV, SAL, etc.)  We will focus on these for the 

remainder of this presentation 
because they represent many of 
the formal modeling concepts in 

a visual notation 



State Charts 

• A more expressive 
formalism for modeling 
complex system behavior 

• A visual formalism 

• Hierarchical 

• Has memory / history 

• Can have concurrency 

 

Down Up

HumanAction = FlipSwitch1

HumanAction = FlipSwitch1

Down Up

HumanAction = FlipSwitch2

HumanAction = FlipSwitch2

Off On

(Switch1 = Down ˄ Switch2 = Up) 

˅ (Switch1 = Up ˄ Switch2 = Down)

(Switch1 = Down ˄ Switch2 = Down) 

˅ (Switch1 = Up ˄ Switch2 = Up)

Light

Switch2

Switch1



State Charts 

• A more expressive 
formalism for modeling 
complex system behavior 

• A visual formalism 

• Hierarchical 

• Has memory / history 

• Can have concurrency 

 

Down Up

HumanAction = FlipSwitch1

HumanAction = FlipSwitch1

Down Up

HumanAction = FlipSwitch2

HumanAction = FlipSwitch2

Off On

(Switch1 = Down ˄ Switch2 = Up) 

˅ (Switch1 = Up ˄ Switch2 = Down)

(Switch1 = Down ˄ Switch2 = Down) 

˅ (Switch1 = Up ˄ Switch2 = Up)

Light

Switch2

Switch1
Example: State Chart for representing a 

light switch system 
 

• Concurrent machines represent the 
state of each switch and the light 
itself 

• States are rounded rectangles 
• Each component has an initial state 

(pointed to by a dotted arrow) 
• Boolean logic indicates when a 

transition (arrow) occurs  
• The state of the light will change in 

response the switches 
 

• More info on state charts 
http://www.wisdom.weizmann.ac.il/~har
el/SCANNED.PAPERS/Statecharts.pdf 



For Safety Critical System… 

• Model the behavior of the target system 

• Encompass the interactions between system 
components in the model 

• Prove that the system adheres to the 
specification 



Specification 

• A specification asserts properties you want to 
be true in the system 

• Usually reasons about the relationship of 
different states in ordinally over time 

• Usually expressed as a temporal logic 



Specification with Temporal Logic 

• Temporal logic allows us to reason about 
states and/or variable values over ordinal time 

• We can assert things like: 

– This should never be true 

– This should always be true 

– This should always happen next 

– X should always happen before Y 

– Etc. 



Specification with Temporal Logic 

Two dominant types: 

• Linear Temporal Logic ( ) 
– Reasons about all paths through the model 

• Computation Tree Logic ( ) 
– Reasons about path through a computation tree 

(there can be branching points) 

 

• Both use basic, binary logic operators but add 
some additional operators 

 



Name Operator Interpretation 

Global 
ϕ G ϕ 

ϕ □ ϕ 
ϕ will always be true 

NeXt 
ϕ X ϕ 

ϕ ○ ϕ 
ϕ will be true in all  

next states 

Future 

ϕ F ϕ 

ϕ ◊ ϕ 
ϕ will eventually be true 

Until ϕ U ψ ϕ will be true until ψ is true 

Temporal operators: 



Examples 

Jon is always late:  G (Jon is late) 
 
I will have a job in the future: F (I have a job) 
 
If I flip a switch, the light will be on in the next state:   
(Switch1 = Flipped → X (Light = On)) 
 
The light will be on until I unflip a switch: 
(Light = On U Switch1 = UnFlipped) 
 
What about this? 
G ( Switch1 = UnFlipped →  X ((Switch1 = Flipped ⋀ Light = On) 
U (Switch1 = UnFlipped))) 



CTL operators are a combination of a path 
qualifier and a temporal operator: 

 

Path Qualifier: 

A – Through all paths 

E – Through one or more paths 



CTL operators are a combination of a path 
qualifier and a temporal operator: 

 

Path Qualifier: 

A – Through all paths 

E – Through one or more paths 

LTL Operators are the 
equivalent of CTL operators 

that start with A 



CTL operators are a combination of a path 
qualifier and a temporal operator: 

 

Path Qualifier: 

A – Through all paths 

E – Through one or more paths 
We can reason about 

existence using E:  
You can see if 

something is possible 



What to check for… 

• Safety properties: 
– Properties starting with AG (CTL) or G (LTL) 

Something good should always be true  
or something bad should never happen 
“The machine should never irradiate the patient” 

• Liveness: 
– Assertions that use AF (CTL) or F (LTL) 

Something good eventually happens 
Response: something happens in response to something earlier 
“the system always eventually stops running” 

• Existence: 
– Assertions that use EF 

The system can do something 
“The system can allow the person to turn the system off” 



What to check for… 

• Safety properties: 
– Properties starting with AG (CTL) or G (LTL) 

Something good should always be true  
or something bad should never happen 
“The machine should never irradiate the patient” 

• Liveness: 
– Assertions that use AF (CTL) or F (LTL) 

Something good eventually happens 
Response: something happens in response to something earlier 
“the system always eventually stops running” 

• Existence: 
– Assertions that use EF 

The system can do something 
“The system can allow the person to turn the system off” 

Only CTL can positively 
assert existence 



Clearly this can be used for 
evaluating system safety… 



Using Formal Methods for  
Human-automation Interaction 

• Proving properties about interfaces to 
encourage safety 

– Usability analyses 

– Mode confusion analyses 

• Proving properties about system safety with 
models of human behavior 

– Cognitive models 

– Task models 



Usability Analyses 

• Model interfaces as finite state machines 

• Prove properties indicative of good usability 
about the interfaces 
– Reachability (interface states can be reached) 

– Visibility (the interface should give feedback) 

– Task-related (things can be accomplished) 

– Reliability (things that make the system reliable): 
• Undoability (things can be done) 

• Consistent behavior  
(the interface always responds the same way) 

• Deadlock freedom 

 



Mode Confusion 



Mode Confusion 

You model the state of the automation  



Mode Confusion 

You model the state of the automation, 
the human-automation interface  



Mode Confusion 

You model the state of the automation, 
the human-automation interface , and 

the human mental model 



Checking for Mode Confusion with 
Model Checking 

Check for Correspondence 

You model check that the 
human mental model is always 

an acceptable abstraction of the 
automation.  If not, there is 

possible mode confusion and/or 
automation surprise 



Checking System Safety  
with Human Behavior 

Modeling cognitive behavior …  
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Checking System Safety  
with Human Behavior 

Modeling cognitive behavior …  
 

Other system elements are 
modeled as finite state 

machines or similar  
formalisms 

(This may include a model of 
the environment) 



Checking System Safety  
with Human Behavior 

Modeling cognitive behavior …  
 

The human cognition is modeled as a collection  
of production rules: 

 

• Attending to different information 
• Processing / categorizing that information 
• Selecting a response 
• Performing the selected response 



Checking System Safety  
with Human Behavior 

A → X 
B → Y 
C → Z 

… 

 

You can check for a number of things: 
 

• That the system is safe for the modeled human behavior or meets other 
performance requirements 

• That the human operator will always achieve their desired goals  
Note:  errors can be organically produced by the production rules 



Cognitive Models are Great But… 

• The cognitive architectures are not widely used 

• The use of cognitive models can lead to complex 
models which can limit analyses 



Checking System Safety  
with Human Behavior 

Task analytic behavior models…  
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Task analytic behavior models…  
 

Other system elements are 
modeled as finite state 

machines or similar  
formalisms 

(This may include a model of 
the environment) 



Checking System Safety  
with Human Behavior 

Task analytic behavior models…  
 

Human Behavior is Modeled Using 
Task Analytic Behavior Models 

 

• Product of a cognitive task analysis 
• Hierarchy (network) of goal  

directed activities and actions 
• Strategic knowledge controls when 

activities execute and complete 
• Modifiers control relationships 

between activities and actions 



Checking System Safety  
with Human Behavior 

Task analytic behavior models…  
 

Human Behavior is Modeled Using 
Task Analytic Behavior Models 

 
 
 

Task model are given formal 
semantics that treat them as a finite 

state machine 



Checking System Safety  
with Human Behavior 

Task analytic behavior models…  
 

aFire

aGo
Back

Press
Up

aFire
Beam

xor

ord

InterfaceState
= PrepareToFireEBeam

˅ InterfaceState
= PrepareToFireXray

InterfaceState
≠ PrepareToFireEBeam

˅ InterfaceState
≠ PrepareToFireXray

BeamState = Ready

PressB

ord

You can check for a number of things: 
 

• That the system is safe for the modeled human behavior or meets other 
performance requirements 

• That the human operator will always achieve their desired goals  



Checking System Safety  
with Human Behavior 

Task analytic behavior models…  
 

aFire

aGo
Back

Press
Up

aFire
Beam

xor

ord

InterfaceState
= PrepareToFireEBeam

˅ InterfaceState
= PrepareToFireXray

InterfaceState
≠ PrepareToFireEBeam

˅ InterfaceState
≠ PrepareToFireXray

BeamState = Ready

PressB

ord

• Human error must be manually 
included and/or generated in the task 
structure 

• This allows the verification to evaluate the 
robustness of the system to human error 



Task Models 

• More widely used than cognitive models 

• Potentially more computationally efficient 
than cognitive models 

• Provide less cognitive explanation 

• Cannot organically produce erroneous 
behaviors 



 
If this stuff is so great, why 

isn’t everybody using it? 



Limitations 

Scalability: 

Combinatorial explosion (“the state explosion problem”) limits 
the size of models that can be checked and the verification time 

Model Complexity 

St
at

es
p

ac
e

 S
iz

e 
Machine Memory Limit 



Limitations 

Notation expressiveness: 

It can be difficult to model concepts using formal modeling 
notations. Concepts such as non-linear dynamics and time can 
be very tricky. Clever abstraction and slicing techniques must be 
used.  



Limitations 

Learnability: 

Formal methods can be  
difficult to learn and teach 



Limitations 

Lack of Integration: 

Formal methods are not well integrated  
into systems engineering and industrial  
engineering environments 



Researchers are Actively Trying to 
Address These Limitations 

 



Conclusions 

• Formal methods are very powerful and represent another 
tool in the human factors toolbox 

• Formal methods can be used to evaluate human-
automation interaction in a number of ways: 
– Find usability problems 
– Detect mode confusion 
– Evaluate system safety and performance 
– Evaluate the robustness of a system to human error 

• Formal methods are limited and should thus be used 
synergistically with other techniques 

• Research is actively improving form human-automation 
interaction analyses and integrating analysis and design 
techniques 



For more information… 

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to 
evaluate human-automation interaction in safety critical systems, a review. 
IEEE Transactions on Systems, Man and Cybernetics: Systems, 43(3), 488-503. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472094 
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